• 제목/요약/키워드: Sustainable Construction

검색결과 877건 처리시간 0.022초

폐기물 자원회수 향상을 위한 친환경 폐페인트 처리프로세스 개발 (Development of a Sustainable Waste Paint Treatment Process for Waste Resource Recovery Improvement)

  • 문종욱;황석호;김대영
    • 한국건설관리학회논문집
    • /
    • 제23권1호
    • /
    • pp.73-82
    • /
    • 2022
  • 국내 지정폐기물 중 하나인 폐페인트는 현재 전량 소각 방법으로 처리되고 있으며, 다른 폐기물에 비해 재활용도 거의 이루어지지 않고 있어, 자원이 부족한 우리나라에 엄청난 자원의 손실뿐 아니라 소각으로 인한 에너지원의 낭비, 그리고 소각 시 발생하는 대기오염 등의 환경문제도 유발하고 있다. 이를 위해 본 연구에서는 기존의 폐페인트의 소각처리법을 탈피하여, 온도 조절에 의한 증발·응축, 열분해를 통해 전처리 조작하는 방법으로 전환하고, 이때 발생하는 잔재물을 활용하여 일정한 형상(과립형 및 분말형)으로 성형한 후 이를 대체에너지 열원으로 재활용할 수 있는 친환경(지속가능한) 폐페인트 처리프로세스를 제시하고자 한다. 폐페인트를 처리하는 새로운 방법과 재활용하는 기술개발이 이루어지고 보급된다면 환경적·경제적 면에서 그 효과가 클 것으로 기대한다.

대형 공공연구인프라의 운영 효율성 제고를 위한 운영 및 유지관리비 평가모델 개발 기초연구 (A Basic Study on the Development of O&M Cost Assessment Model to Improve Operational Efficiency of Large Public Research Infrastructures (CAM))

  • 최선아;손승현;이성호;오엄중;한범진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.93-94
    • /
    • 2021
  • The Korean government has invested a tremendous amount of money in the last 10 years to build large public research infrastructures (LPRI). For efficient operation and maintenance of LPRI built with expensive equipment and professional engineers, reasonable budget needs to be allocated. However, it is difficult to fulfill sustainable operation and maintenance (O&M) because there is no standard on budgeting for efficient LPRI operation, including expensive equipment and manpower allocation. There have been a lot of cost assessment studies regarding O&M of high-demand facilities such as hospitals, hotels and residential buildings, but a very few on sustainable O&M of LPRI. Therefore, mid/long-term budget establishment plans for efficient LPRI O&M are required from the initial planning stage and a cost assessment model to support the plans should be developed. The objective of this paper is to propose a cost assessment model for sustainable operation and maintenance of large public research infrastructures. To do so, actual O&M data of 6 LPRI types in operation are collected, and regression analysis model (RAM) is used for development and evaluation a cost assessment model. The study result will support sustainable operation of LPRI from a business perspective and be used as basic data for continuous development of cost assessment models to establish budgets for LPRI operation from an academic perspective.

  • PDF

Enhancing mechanical performance of steel-tube-encased HSC composite walls: Experimental investigation and analytical modeling

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Huakun Wu;Lai B;Timothy Chen
    • Steel and Composite Structures
    • /
    • 제52권6호
    • /
    • pp.647-656
    • /
    • 2024
  • This paper discusses the study of concrete composite walls of algorithmic modeling, in which steel tubes are embedded. The load-bearing capacity of STHC composite walls increases with the increase of axial load coefficient, but its ductility decreases. The load-bearing capacity can be improved by increasing the strength of the steel pipes; however, the elasticity of STHC composite walls was found to be slightly reduced. As the shear stress coefficient increases, the load-bearing capacity of STHC composite walls decreases significantly, while the deformation resistance increases. By analyzing actual cases, we demonstrate the effectiveness of the research results in real situations and enhance the persuasiveness of the conclusions. The research results can provide a basis for future research, inspire more explorations on seismic design and construction, and further advance the development of this field. Emphasize the importance of research results, promote interdisciplinary cooperation in the fields of structural engineering, earthquake engineering, and materials science, and improve overall seismic resistance. The emphasis on these aspects will help highlight the practical impact of the research results, further strengthen the conclusions, and promote progress in the design and construction of earthquake-resistant structures. The goals of this work are access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient architecture, sustainable planning and management of human settlements. Simulation results of linear and nonlinear structures show that this method can detect structural parameters and their changes due to damage and unknown disturbances. Therefore, it is believed that with the further development of fuzzy neural network artificial intelligence theory, this goal will be achieved in the near future.

Improvement of mechanical properties of bio-concrete using Enterococcus faecalis and Bacillus cereus

  • Alshalif, Abdullah Faisal;Juki, Mohd Irwan;Othman, Norzila;Al-Gheethi, Adel Ali;Khalid, Faisal Sheikh
    • Environmental Engineering Research
    • /
    • 제24권4호
    • /
    • pp.630-637
    • /
    • 2019
  • The present study aimed to investigate the potential of Enterococcus faecalis (E. faecalis) and Bacillus cereus (B. cereus) in improving the properties of bio-concrete. E. faecalis and B. cereus strains were obtained from fresh urine and an acid mire water at cell concentration of 1.16×1012 and 1.3×1012 cells mL-1, respectively. The bacterial strains were inoculated in a liquid medium into the concrete with 1, 3 and 5% as replacement of water cement ratio (w/c). The ability of E. faecalis and B. cereus cells to accumulate the calcite and the decrement of pores size within bio-concrete was confirmed by SEM and EDX analysis. The results revealed that E. faecalis exhibited high efficiency for increasing of compressive and splitting tensile strength than B. cereus (23 vs. 14.2%, and 13 vs. 8.5%, respectively). These findings indicated that E. faecalis is more applicable in the bio-concrete due to its ability to enhance strength development and reduce water penetration.

전통주택 흙벽을 대신할 수 있는 건식벽체 성능평가에 관한 연구 (A Study of Dry-Wall Performance Evaluation - An Alternative to Korean Traditional Mud Walling -)

  • 황용운
    • 한국주거학회논문집
    • /
    • 제22권6호
    • /
    • pp.61-69
    • /
    • 2011
  • Korea's traditional house type, the Hanok, has been the essence of Korean domestic culture for hundreds of years. However, Hanok, have begun to disappear as result of urbanization. Because mud walls are crude and weak in water walls are also easily broken by impact. There are further problems in that construction cost is expensive and takes more time than modern house construction, and that the maintenance of Hanok is more difficult than people sometimes predict. Despite much interest in Hanok construction, there is a lack of in younger generation. Thus seeking new ways of maintaining Korea's traditional housing culture and extending Korean traditional houses is important. This study proposes directions for creating new residential environments for the future generation of Korea. A Dry-wall alternative to the Korean traditional mud wall is particularly needed. Dry-walling, made by sustainable materials such as mud board and wood, can strengthen the advantages and make up for the weaknesses of the Korea traditional mud wall. In this study, both wall types underwent various evaluations in terms of their performance in insulation testing, freezing and thawing testing, impacting testing and weight measuring (the size of material in this experiment was $69cm{\times}105cm$). On all of these tests, findings revealed that the dry-wall alternative performed better than traditional mud wall.

Strength and behaviour of recycled aggregate geopolymer concrete beams

  • Deepa, Raj S;Jithin, Bhoopesh
    • Advances in concrete construction
    • /
    • 제5권2호
    • /
    • pp.145-154
    • /
    • 2017
  • In the present day scenario, concrete construction is rapidly becoming uneconomical and non sustainable practice, due to the scarcity of raw materials and environmental pollution caused by the manufacturing of cement. In this study an attempt has been made to propose recycled aggregates from demolition wastes as coarse aggregate in geopolymer concrete (GPC). Experimental investigations have been conducted to find optimum percentage of recycled aggregates (RA) in GPC by replacing 20%, 30%, 40%, 50% and 60% of coarse aggregates by RA to produce recycled aggregate geopolymer concrete (RGPC). From the study it has been found that the optimum replacement percentage of recycled aggregates was 40% based on mechanical properties and workability. In order to study and compare the flexural behaviour of RGPC and GPC four beams of size $175mm{\times}150mm{\times}1200mm$ were prepared and tested under two point loading. Test results were evaluated with respect to first crack load, ultimate load, load-deflection characteristics, ductility and energy absorption characteristics. Form the experimental study it can be concluded that the addition of recycled aggregate in GPC causes slight reduction in its strength and ductility. Since the percentage reduction in strength and behaviour of RGPC is meager compared to GPC it can be recommended as a sustainable and environment friendly construction material.

코어 위치와 종횡비 및 방위에 따른 건물 에너지 부하 분석 (An Analysis on Building Energy Load along Core Position, Area Ratio and Orientation)

  • 김진호;박우평;신승호;민준기;김동훈
    • 한국지열·수열에너지학회논문집
    • /
    • 제9권1호
    • /
    • pp.15-19
    • /
    • 2013
  • In this Study, effect of core position, area ratio and orientation of building on energy load is examined using TRNSYS17. This parameters are major parameters of the conceptual design stage. Reference model is square floor plan($1,444m^2$), centered core and 29% core area ratio. As the results, without considering the building orientation, the annual heating load of central building with 1:1 area ratio is lowest ($10.33kWh/m^2yr$) and the annual cooling load of off-central building with 1:1 area ratio is lowest ($59.27kWh/m^2yr$). As area ratio is bigger, cooling load is lower and heating load is higher. But if we consider building orientation, orders of heating load and cooling load are changed for area ratio and orientation.

Correlation Analysis between Median Household Income and LEED-Certified Public Transportation Access

  • Han, Hee Su;Kim, Boo-Young;Park, Young Jun;Son, Kiyoung
    • 한국건축시공학회지
    • /
    • 제14권3호
    • /
    • pp.266-272
    • /
    • 2014
  • The Leadership in Energy and Environmental Design (LEED) Green Building Rating System provides third-party verification for environmentally sustainable construction. But while LEED-certified buildings provide healthier work and living environments, Previous studies have shown that LEED certification does not provide any direct economic incentives to owners and developers. To address this issue, this study aims to investigate the economic benefits of LEED criteria. The objective of this study is to examine whether or not there is a significant correlation between median household income and the number of bus stops and light rail stations for a given parcel that meet LEED sustainable site criteria for public transportation access. The findings showed that the number of bus stops had a positive correlation with median household income, which means that more bus stops a given parcel had that met LEED criteria, the greater the median household income of a block group where the given parcel was located would be, though this positive correlation was very weak.

Options for sustainable earthquake-resistant design of concrete and steel buildings

  • Gilmore, Amador Teran
    • Earthquakes and Structures
    • /
    • 제3권6호
    • /
    • pp.783-804
    • /
    • 2012
  • Because of its large contribution to the environmental instability of the planet, the building industry will soon be subjected to a worldwide scrutiny. As a consequence, all professionals involved in the building industry will need to create a professional media in which their daily work adequately solves the technical issues involved in the conception, design and construction of concrete and steel buildings, and simultaneously convey care for the environment. This paper discusses, from the point of view of a structural engineer involved in earthquake-resistant design, some of the measures that can be taken to promote the consolidation of a building industry that is capable of actively contributing to the sustainable development of the world.

초고층아파트 단위주공간의 지속가능성 평가요소 분석 (An Analysis of the Sustainability of High-rise Apartment Unit Design Elements)

  • 이은정
    • KIEAE Journal
    • /
    • 제6권3호
    • /
    • pp.57-66
    • /
    • 2006
  • The issue of sustainability has been prevailed not only in building industry but also all other industries. It has been raised that the concept of sustainability should take into account for the design of multi-use high-rise apartments. In this study, the present situation and trends of the multi-use high-rise apartment construction have been reviewed. The definition of sustainable design of high-rise apartment has been clarified so as to perceive the related design elements through the literature survey. Finally this study has derived the sustainable design elements of high-rise apartment unit plans through the comparative analysis of sustainable design guidelines, environmentally friendly building accreditation systems and literature survey in and abroad.