• Title/Summary/Keyword: Survivability of naval ships

Search Result 37, Processing Time 0.024 seconds

A Study of Survivability Improvement Method for Naval Ships′Design I - Design Method Considering Box Girder - (함정 설계의 생존성 향상 방안에 관한 연구 I - Box Girder를 고려한 설계 방법 -)

  • Kim, Jae-Hyun;Park, Myeong-Gyu
    • Journal of Navigation and Port Research
    • /
    • v.27 no.2
    • /
    • pp.199-207
    • /
    • 2003
  • In the combat environments at the sea, the naval ships should have enough structural integrity to perform the task under the enemy's attack and possible damages. Although the naval ships can be damaged from the enemy's attack, those damages should be minimized and the naval ships must maintain their combat capabilities continuously after recoveries from the damages. Therefore, it is ve교 important for modem naval ships, especially combat naval ships, to ensure the survivability. This paper reviewed the developing procedure for the technique of the naval ships structures and described method, especially box girder system considering survivability. The efficiency of box girder is examined by numerical simulation, and it is found that the establishment of box girder is a good design method to improve the survivability.

Application of Arbitrary Lagrangian-Eulerian Technique for Air Explosion Structural Analysis for Naval Ships Using LS-DYNA

  • Kim Jae-Hyun;Shin Hyung-Cheol;Park Myung-Kyu
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.1
    • /
    • pp.38-46
    • /
    • 2005
  • Survivability improvement method for naval ship design has been continually developed. In order to design naval ships considering survivability, it is demanded that designers should establish reasonable damage conditions by air explosion. Explosion may induce local damage as well as global collapse to the ship. Therefore possible damage conditions should be realistically estimated in the design stage. In this study the authors used ALE technique, one of the structure-fluid interaction techniques, to simulate air explosion and investigated survival capability of damaged naval ships. Lagrangian-Eulerian coupling algorithm, equation of the state for explosive and air, and simple calculation method for explosive loading were also reviewed. It is shown that air explosion analysis using ALE technique can evaluate structural damage after being attacked. This procedure can be applied to the real structural design quantitatively by calculating surviving time and probability.

A Study on Simple Calculation Method of Survival Time for Damaged Naval Ship Due to the Explosion (폭발에 의해 손상된 함정의 생존시간 간이계산법 연구)

  • Kim, Jae-Hyun;Park, Myung-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.4
    • /
    • pp.211-217
    • /
    • 2007
  • Due to advanced new weapons and changes in the combat environment, survivability improvement methods for naval ship design have continuously evolved. Surface naval ships are easily detected by the enemy and, moreover, there are many attack weapons that may be used against surface naval ships. Therefore, it is important for modem naval ships, especially combat naval ships, to ensure survivability. In order to design a naval ship considering survivability, the designers are required to establish reasonable attack scenarios. An explosion may induce local damage as well as global collapse of the ship. Therefore, possible damage conditions should be realistically estimated at the design stage. In this study, an ALE technique was used to simulate the explosion analysis, and the survival capability of damaged naval ships was investigated. Especially, the author have establish the simple method of estimation of survival time for damaged naval ships.

  • PDF

Development of a Vulnerability Assessment Model for Naval Ships on a Theater Engagement Analysis (전구급 교전분석을 위한 함정 취약성 평가모델 개발)

  • Lee, Sungkyun;Go, Jinyong;Kim, Changhwan;You, Seungki
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • In actual battlefield environment, the naval ships which have specific missions have to respond to the attack of hostile forces. Especially, in modern warfare, the importance of the survivability of naval ships are increasing due to the high lethality of armaments. Naval ship survivability is generally considered to encompass three constituents, susceptibility, vulnerability and recoverability. Recently, among these three constituents, many researches on vulnerability have been conducted. However, for the vulnerability of naval ships, most of researches are aimed towards the detailed design stages where implementing changes is heavily constrained or even impractical. In this paper, vulnerability assessment model for naval ships on a theater engagement is developed by using M&S technique. By using this model, the characteristics of platform and armaments are reflected on the damage of naval ship. The basic logic of damage assessment is also considered in detail. The damage status of the naval ship is quantified by defining a representative state index of onboard equipment for each system.

A Study on the Path Search for the Rapid Suppression of Naval Ships Casualties (함정 재해의 신속 진압을 위한 경로 탐색에 관한 연구)

  • Park, Ju-hun;Ruy, Won-Sun;Chung, Jung-Hoon;Kim, Sook-Kyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.4
    • /
    • pp.221-229
    • /
    • 2020
  • Naval ships could be seriously damaged by enemy attacks in battle. Moreover, this damage could be spread and deteriorated into a secondary accident. Secondary accidents that have adverse effects on naval ship's survivability, such as fire, flood, smoke extension, and patient occurrence, are defined as casualties. These casualties sharply degrade the survivability of naval ships. Furthermore, naval ships could be burned-out and sunk by casualties in isolated sea. Therefore, damage control and rapid suppression of the casualties in the naval ships is essential. This study was conducted in the establishment of suppression paths according to the characteristics of each casualty so that the developed system can support the rapid suppression in an emergency and even the training situation on a regular state. To establish the suppression paths, the two-dimensional numerical map is designed by converting the three-dimensional features of the naval ships, and the well known algorithms are compared to present the appropriate one for path finding problem on the naval ships. Finally, we devised a specific routing algorithm that fits the characteristics of each casualty in accordance with the Korean Navy's doctrines and handbooks of casualty suppression.

A Study on the Survivability Assessment System of Damaged Ships (손상선박의 생존성 평가 시스템에 관한 연구)

  • Lee, Dong-Kon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.2
    • /
    • pp.34-40
    • /
    • 2003
  • Ship damage due to maritime casualties lead to marine pollution, loss of life and properties. The maritime casualties come from the rough sea and bad weather condition generally. Therefore the large-scaled casualties will be derived from loss of structural strength and stability due to the progressive flooding and enlargement of damage by the effect of wave and wind. The improvement of damage survivability is very important in maritime safety This paper described the damage survivability assessment system which can be evaluate and improve the ship safety in consideration of loading, sea and damage condition. The components of the system and decision criteria for damage stability and structural safety is established. The ship modeler and behavior analysis program in wave is developed. Finally further research work is also discussed.

Development of damage control training scenarios of naval ships based on simplified vulnerability analysis results

  • Park, Dong-Ki;Shin, Yun-Ho;Chung, Jung-Hoon;Jung, Eui S.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.386-397
    • /
    • 2016
  • Given the growing interest in damage control training for the naval ships and their organizations, expectations for a new concept of training program have also increased. The existing training programs and its concept focus on training crew to be more proficient and skilled so that they can respond better to damage situations, i.e., fires and flooding. This paper suggests a development procedure of damage control training scenarios using the survivability analysis results as a new concept of damage control training programs employing advanced systems such as damage control console, automation system, and kill cards. This approach could help the decision maker not only enhance his or her capability but also improve the reacting capability of crew members for complex situations induced by a weapon hit.

The Study on the Methodology for Naval Ship(Craft Air Cushion) Vulnerability Analysis (함정(공기부양정) 취약성 분석방법 연구)

  • Choi, Bong-Wan;Lee, Chan-Sun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1106-1112
    • /
    • 2010
  • One of the considerations in weapon systems procurement is the objective of maximizing the current force. Also, offensive effects, rather than defense are valued in weapons system development and procurement. Especially, the survivability of a naval ship is equally important as the offensive effect of onboard weapons. In case of naval ships, development of attack tactics and research regarding damage minimization must be conducted through live fire exercise against actual targets in order to minimize damage from the enemy. However, it is difficult to conduct such adequate measures due to realistic limitations such as time and budget in order to verify and calculate a weapon system's attack and damage effects along with the lack of practical studies in this subject despite numerous interests. Research are being conducted utilizing M&S to estimate attack effects and study damages due to such reason, but the lack of authoritative data and development ability are limiting calculation of reliable results. Therefore, this study will propose a measure to increase survivability of a weapon system(ship/vessel) utilizing research of vulnerability from enemy attacks analysis method against a naval ship(Craft Air Cushion).

A Feasibility Study on the Estimation of a Ship's Susceptibility Based on the Effectiveness of its Anti-Air Defense Systems (함정 대공방어시스템의 효과도를 활용한 피격성 추정 가능성 연구)

  • GeonHui Lee;SeokTae Yoon;YongJin Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.57-64
    • /
    • 2023
  • Recently, the increased use of anti-ship guided missiles, a weapon system that detects and attacks targets in naval engagement, has come to pose a major threat to the survivability of ships. In order to improve the survivability of ships in response to such anti-ship guided missiles, many studies of means to counteract them have been conducted in militarily advanced countries. The integrated survivability of a ship can be largely divided into susceptibility, vulnerability, and recoverability, and is expressed as the conditional probability, if the ship is hit, of damage and recovery. However, as research on susceptibility is a major military secret of each country, access to it is very limited and there are few publicly available data. Therefore, in this study, a possibility of estimating the susceptibility of ships using an anti-air defense system corresponding to anti-ship guided missiles was reviewed. To this, scenarios during engagement, weapon systems mounted to counter threats, and maximum detection/battle range according to the operational situation of the defense weapon system were defined. In addition, the effectiveness of the anti-air defense system and susceptibility was calculated based on the performance of the weapon system, the crew's ability to operate the weapon system, and the detection probability of the detection/defense system. To evaluate the susceptibility estimation feasibility, the sensitivity of the detailed variables was reviewed, and the usefulness of the established process was confirmed through sensitivity analysis.

Advances in ship survivability against underwater explosions

  • Shin, Young S.
    • Ocean Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.111-119
    • /
    • 2011
  • Mines, torpedoes and improvised explosive devices (IED) pose a serious threat to the survivability of naval combatants. Inasmuch, a major goal in the design of modern combatant ships has been to eliminate or at least reduce the devastating damage caused by underwater explosion events. Even though there has been extensive research performed on the various underwater explosion phenomena and their associated effects, effective shock testing and shock proofing strategies for naval ship systems have proven to be illusive. Through the use of modeling and simulation (M&S), live fire test and evaluation (LFT&E) and laboratory testing, general guidelines for the shock hardening of shipboard equipment and systems have been developed. In this paper, current aspect of ship survivability has been addressed and future direction is discussed.