• Title/Summary/Keyword: Surveillance intelligent system

Search Result 235, Processing Time 0.034 seconds

An Intelligent Video Image Segmentation System using Watershed Algorithm (워터쉐드 알고리즘을 이용한 지능형 비디오 영상 분할 시스템)

  • Yang, Hwang-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.3
    • /
    • pp.309-314
    • /
    • 2010
  • In this paper, an intelligent security camera over internet is proposed. Among ISC methods, watersheds based methods produce a good performance in segmentation accuracy. But traditional watershed transform has been suffered from over-segmentation due to small local minima included in gradient image that is input to the watershed transform. And a zone face candidates of detection using skin-color model. last step, face to check at face of candidate location using SVM method. It is extract of wavelet transform coefficient to the zone face candidated. Therefore, it is likely that it is applicable to read world problem, such as object tracking, surveillance, and human computer interface application etc.

Reducing the Minimum Turning Radius of the 2WS/2WD In-Wheel Platform through the Active Steering Angle Generation of the Rear-wheel Independently Driven In-Wheel Motor (후륜 독립 구동 인 휠 모터의 능동적 조향각 생성을 통한 2WS/2WD In-Wheel 플랫폼의 최소회전 반경 감소)

  • Taehyun Kim;Daekyu Hwang;Bongsang Kim;Seonghee Lee;Heechang Moon
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.299-307
    • /
    • 2023
  • In the midst of accelerating wars around the world, unmanned robot technology that can guarantee the safety of human life is emerging. ERP-42 is a modular platform that can be used according to the application. In the field of defense, it can be used for transporting supplies, reconnaissance and surveillance, and medical evacuation in conflict areas. Due to the nature of the military environment, atypical environments are predominant, and in such environments, the platform's path followability is an important part of mission performance. This paper focuses on reducing the minimum turning radius in terms of improving path followability. The minimum turning radius of the existing 2WS/2WD in-wheel platform was reduced by increasing the torque of the independent driving in-wheel motor on the rear wheel to generate oversteer. To determine the degree of oversteer, two GPS were attached to the center of the front and rear wheelbases and measured. A closed-loop speed control method was used to maintain a constant rotational speed of each wheel despite changes in load or torque.

Adaptive Spatial Coordinates Detection Scheme for Path Planning of Unmanned Ground Vehicle (지상용 무인 차량의 경로 계획을 위한 적응적인 공간좌표 검출 기법)

  • Cho, Do-Hyeoun;Lee, Jong-Yong;Ko, Jung-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1261-1264
    • /
    • 2005
  • In this paper, a new intelligent moving target tracking and surveillance system basing on the pan/tilt-embedded stereo camera system is suggested and implemented. In the proposed system, once the face area of a target is detected from the input stereo image by using a YCbCr color model and then, using this data as well as the geometric information of the tracking system, the distance and 3D information of the target are effectively extracted in real-time.

  • PDF

Implementation of the Intelligent MUX System for Green USN (녹색 유비쿼터스 지능형 다중화장비의 구현)

  • Kang, Jeong-Jin;Chang, Hark-Sin;Lee, Young-Chul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • Recently emphasizing the importance of security such as national major institutions' facilities or major industrial facilities for the maintenance of security/crime prevention due to specialization of the Green Information Technology(G-IT) and Green Ubiquitous Technology(G-UT) industry fields, The Security System Building linked high technology within the government-related organization, enterprise and army the military is urgently required. This paper is about the green USN intelligent an unmanned guard MUX system that receive the signals, from alarm device within surveillance area, with various ways of communication techniques and then transmit to local control center and remote control server trough TCP/IP network. This study enables the mutual senergy effect by realizing a total solution of an unmanned guard system and also significantly contributes to the global/domestic market expansion. That can be applied to the crime prevention/security fields in the Green Ubiquitous Environment Implemented Business(survalance-Home, Gu-City, Gu-Health, etc.), and will contribute to expand companies with international competitiveness that can provide the Green Ubiquitous Vision(Gu-Vision).

Development of Real-time Video Surveillance System Using the Intelligent Behavior Recognition Technique (지능형 행동인식 기술을 이용한 실시간 동영상 감시 시스템 개발)

  • Chang, Jae-Young;Hong, Sung-Mun;Son, Damy;Yoo, Hojin;Ahn, Hyoung-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.161-168
    • /
    • 2019
  • Recently, video equipments such as CCTV, which is spreading rapidly, is being used as a means to monitor and cope with abnormal situations in almost governments, companies, and households. However, in most cases, since recognizing the abnormal situation is carried out by the monitoring person, the immediate response is difficult and is used only for post-analysis. In this paper, we present the results of the development of video surveillance system that automatically recognizing the abnormal situations and sending such events to the smartphone immediately using the latest deep learning technology. The proposed system extracts skeletons from the human objects in real time using Openpose library and then recognizes the human behaviors automatically using deep learning technology. To this end, we reconstruct Openpose library, which developed in the Caffe framework, on Darknet framework to improve real-time processing. We also verified the performance improvement through experiments. The system to be introduced in this paper has accurate and fast behavioral recognition performance and scalability, so it is expected that it can be used for video surveillance systems for various applications.

Robust Detection of Abandoned Objects Using Visual Context (시각적 정황을 이용한 가림 현상에 강건한 버려진 물체 검출)

  • Lee, Jung-Hyun;Im, Jae-Hyun;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.60-66
    • /
    • 2012
  • In this paper, we propose abandoned object detection algorithm. When abandoned object was occluded other object, the existing methods cannot detect abandoned object because those methods are not able to estimate the location of abandoned object. In order to overcome this problem, the proposed algorithm extracts the corners around abandoned object. The detected corners are linked to center of abandoned object called by supporters. We can then estimate the location of abandoned object by using supporters. Therefore, the proposed algorithm can detect and estimate the location of abandoned object, when abandoned object is occluded by other object. For this reason, the proposed algorithm can be applied to intelligent surveillance system to prevent bomb terror, which disguises as luggage or box.

Fusion algorithm for Integrated Face and Gait Identification (얼굴과 발걸음을 결합한 인식)

  • Nizami, Imran Fareed;Hong, Sug-Jun;Lee, Hee-Sung;Ann, Toh-Kar;Kim, Eun-Tai;Park, Mig-Non
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.15-18
    • /
    • 2007
  • Identification of humans from multiple view points is an important task for surveillance and security purposes. For optimal performance the system should use the maximum information available from sensors. Multimodal biometric systems are capable of utilizing more than one physiological or behavioral characteristic for enrollment, verification, or identification. Since gait alone is not yet established as a very distinctive feature, this paper presents an approach to fuse face and gait for identification. In this paper we will use the single camera case i.e. both the face and gait recognition is done using the same set of images captured by a single camera. The aim of this paper is to improve the performance of the system by utilizing the maximum amount of information available in the images. Fusion is considered at decision level. The proposed algorithm is tested on the NLPR database.

  • PDF

Real-Time Face Tracking Algorithm Robust to illumination Variations (조명 변화에 강인한 실시간 얼굴 추적 알고리즘)

  • Lee, Yong-Beom;You, Bum-Jae;Lee, Seong-Whan;Kim, Kwang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3037-3040
    • /
    • 2000
  • Real-Time object tracking has emerged as an important component in several application areas including machine vision. surveillance. Human-Computer Interaction. image-based control. and so on. And there has been developed various algorithms for a long time. But in many cases. they have showed limited results under uncontrolled situation such as illumination changes or cluttered background. In this paper. we present a novel. computationally efficient algorithm for tracking human face robustly under illumination changes and cluttered backgrounds. Previous algorithms usually defines color model as a 2D membership function in a color space without consideration for illumination changes. Our new algorithm developed here. however. constructs a 3D color model by analysing plenty of images acquired under various illumination conditions. The algorithm described is applied to a mobile head-eye robot and experimented under various uncontrolled environments. It can track an human face more than 100 frames per second excluding image acquisition time.

  • PDF

Human Posture Recognition: Methodology and Implementation

  • Htike, Kyaw Kyaw;Khalifa, Othman O.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1910-1914
    • /
    • 2015
  • Human posture recognition is an attractive and challenging topic in computer vision due to its promising applications in the areas of personal health care, environmental awareness, human-computer-interaction and surveillance systems. Human posture recognition in video sequences consists of two stages: the first stage is training and evaluation and the second is deployment. In the first stage, the system is trained and evaluated using datasets of human postures to ‘teach’ the system to classify human postures for any future inputs. When the training and evaluation process is deemed satisfactory as measured by recognition rates, the trained system is then deployed to recognize human postures in any input video sequence. Different classifiers were used in the training such as Multilayer Perceptron Feedforward Neural networks, Self-Organizing Maps, Fuzzy C Means and K Means. Results show that supervised learning classifiers tend to perform better than unsupervised classifiers for the case of human posture recognition.

Deep Learning Object Detection to Clearly Differentiate Between Pedestrians and Motorcycles in Tunnel Environment Using YOLOv3 and Kernelized Correlation Filters

  • Mun, Sungchul;Nguyen, Manh Dung;Kweon, Seokkyu;Bae, Young Hoon
    • Journal of Broadcast Engineering
    • /
    • v.24 no.7
    • /
    • pp.1266-1275
    • /
    • 2019
  • With increasing criminal rates and number of CCTVs, much attention has been paid to intelligent surveillance system on the horizon. Object detection and tracking algorithms have been developed to reduce false alarms and accurately help security agents immediately response to undesirable changes in video clips such as crimes and accidents. Many studies have proposed a variety of algorithms to improve accuracy of detecting and tracking objects outside tunnels. The proposed methods might not work well in a tunnel because of low illuminance significantly susceptible to tail and warning lights of driving vehicles. The detection performance has rarely been tested against the tunnel environment. This study investigated a feasibility of object detection and tracking in an actual tunnel environment by utilizing YOLOv3 and Kernelized Correlation Filter. We tested 40 actual video clips to differentiate pedestrians and motorcycles to evaluate the performance of our algorithm. The experimental results showed significant difference in detection between pedestrians and motorcycles without false positive rates. Our findings are expected to provide a stepping stone of developing efficient detection algorithms suitable for tunnel environment and encouraging other researchers to glean reliable tracking data for smarter and safer City.