• Title/Summary/Keyword: Surface water waves

Search Result 292, Processing Time 0.024 seconds

Numerical Methods for Wave Response in Harbor

  • Kim, D.J.;Bai, K.J.
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.1 no.1
    • /
    • pp.4-14
    • /
    • 1993
  • A natural and an artificial harbor can exhibit frequency (or period) dependent water surface oscillations when excited by incident waves. Such oscillations in harbors can cause significant damages to moored ships and adjacent structures. This can also induce undesirable current in harbor. Many previous investigators have studied various aspects of harbor resonance problem. In the present paper, both a localized finite element method(LFEM) which is based on the functional constructed by Chen & Mei(1974) and Bai & Yeung(1974) and an integral equation method which was used by Lee(1969) are applied to harbor resonance problem. The LFEM shows computationally more efficient than the integral equation method. Our test results show a good agreement compared with other results. In the present computations, specifically two harbor geometris are treated here. The present method by LFEM can be extended to a fully three dimensional harbor problem.

  • PDF

Numerical Methods for Wave Response in Harbor (항만내의 파도 응답에 관한 수치 계산)

  • D.J.,Kim;K.J.,Bai
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.3
    • /
    • pp.3-12
    • /
    • 1988
  • A natural or an artificial harbor can exhibit frequency(or period) dependent water surface oscillations when excited by incident waves. Such oscillations in harbors can cause significant damage to moored ships and adjacent structures. This can also induce undesirable current in harbors. Many previous investigators have studied various aspects of harbor resonance problem. In the percent paper, both a localizes finite element method(LFEM) which is based on the functional constructed by Chen & Mei(1974) and Bai & Yeung(1974) and an integral equation method which was used by Lee(1969) are applied to harbor resonance problem. The present method(LFEM) shows computationally more efficient than the integral equation method. Our test results shows good agreement compared with other results. This enhanced computational efficiency is due to the fact that the present method gives a banded symmetric coefficients matrix and requires much less computational time in the calculation of the influence coefficients matrix than the integral equation method involved with Green's function. To test the present numerical scheme, two models are treated here. The present method(LFEM) can be extended to a fully three dimensional harbor problem with the similar computational advantage.

  • PDF

The Vertical Motion Calculation of a Catamaran in Regular Waves (규칙파중(規則波中)에서의 쌍동선(雙胴船)의 수직운동성능계산(垂直運動性能計算))

  • G.S.,Yoon;H.S.,Choi;K.P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.4
    • /
    • pp.47-52
    • /
    • 1982
  • The present paper gives numerical results of 2-D hydrodynamic forces on twin cylinders oscillating on a free surface in a deep water. The singularity distribution method is applied to determine a stream function. Based on the 2-D results the vertical motion responses of a catamaran model(ASR 5061) moving in regular head seas are estimated by using Ordinary Strip Method(O.S.M.). Numerical results show in general good agreements with Jones' theoretical and experimental results except those the resonance frequency.

  • PDF

Computation of the inviscid drift force caused by nonlinear waves on a submerged circular cylinder

  • Koh, Hyeok-Jun;Cho, Il-Hyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.201-207
    • /
    • 2011
  • In this paper, we focused on computing the higher-harmonic components of the transmitted wave passing over a submerged circular cylinder to show that it is causing a horizontal negative drift force. As numerical models, a circular cylinder held fixed under free surface in deep water is adopted. As the submergence of a circular cylinder decreases and the incident wavelength becomes longer, the higher-harmonic components of the transmitted wave starts to increase. An increase of the higher-harmonic components of the transmitted wave makes the horizontal drift force be negative. It is also found that the higher-harmonic amplitudes averaged over the transmitted wave region become larger with the increase of wave steepness and wavelength as well as the decrease of submergence depth.

Experimental and numerical study on the wave force calculation of a partially immersed horizontal cylindrical float

  • Liu, Bijin;Fu, Danjuan;Zhang, Youquan;Chen, Xiaoyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.733-742
    • /
    • 2020
  • Taking the cylindrical float of the floating fence of a floating litter collection device as the research object, based on the shallow immersion characteristics of the cylindrical float, the Morison equation is modified, and the interaction between regular waves and the partially immersed horizontal cylindrical float is discussed in combination with scale model test. The results show that the modified Morison equation can accurately predict the wave force of the horizontal cylindrical float and reveal the influence of amplitude, immersion depth and period on the wave force of the cylindrical float. For partially immersed cylindrical floats, the wave force increases with the increase in wave height and decays with the increase in period. The positive value distribution of the wave force is larger than that of the negative direction, and the difference between the positive and negative directions is mainly affected by the immersion depth.

3-Dimensional Numerical Analysis of Air Flow inside OWC Type WEC Equipped with Channel of Seawater Exchange and Wave Characteristics around Its Structure (in Case of Regular Waves) (해수소통구를 구비한 진동수주형 파력발전구조물 내에서 공기흐름과 구조물 주변에서 파랑특성에 관한 3차원수치해석(규칙파의 경우))

  • Lee, Kwang Ho;Lee, Jun Hyeong;Jeong, Ik Han;Kim, Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.242-252
    • /
    • 2018
  • It is well known that an Oscillating Water Column Wave Energy Converter (OWC-WEC) is one of the most efficient wave absorber equipment. This device transforms the vertical motion of water column in the air chamber into the air flow velocity and produces electricity from the driving force of turbine as represented by the Wells turbine. Therefore, in order to obtain high electric energy, it is necessary to amplify the water surface vibration by inducing resonance of the piston mode in the water surface fluctuation in the air chamber. In this study, a new type of OWC-WEC with a seawater channel is used, and the wave deformation by the structure, water surface fluctuation in the air chamber, air outflow velocity from the nozzle and seawater flow velocity in the seawater channel are evaluated by numerical analysis in detail. The numerical analysis model uses open CFD code OLAFLOW model based on multi-phase analysis technique of Navier-Stokes solver. To validate model, numerical results and existing experimental results are compared and discussed. It is revealed within the scope of this study that the air flow velocity at nozzle increases as the Ursell number becomes larger, and the air velocity that flows out from the inside of the air chamber is larger than the velocity of incoming air into the air chamber.

Wave Exciting Forces Acting on Ships in Following Seas (추파중(追波中)에서 항행(航行)하는 선체(船體)에 작용(作用)하는 파강제력(波强制力)에 관(關)한 연구(硏究))

  • Kyoung-Ho,Son;Jin-Ahn,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.3
    • /
    • pp.27-34
    • /
    • 1984
  • When a ship is travelling in following seas, the encounter frequency is reduced to be very low. In that case broaching phenomenon is most likely to occur, and it may be due to wave exciting forces acting on ships. It is thought that the wave exciting forces acting on ships in following seas almost consist of two components. One is hydrostatic force due to Froude-Krylov hypothesis, and the other is hydrodynamic lift force due to orbital motion of water particles below the wave surface. In the present paper, the emphasis is laid upon wave exciting sway force, yaw moment and roll moment acting on ships in following seas. The authers take the case that the component of ship speed in the direction of wave propagation is equal to the wave celerity, i.e., the encounter frequency is zero. Hydrostatic force components are calculated by line integral method on Lewis form plane, and hydrodynamic lift components are calculated by lifting surface theory. Furthermore captive model tests are carried out in regular following waves generated by means of a wave making board. Through the comparison between calculated and measured values, it is confirmed that the wave exciting forces acting on ships in following seas can be predicted in terms of present method to a certain extent.

  • PDF

Notes on Incompressible Theory of Hydrodynamic Pressureon Dams during Earthquakes (지진에 의하여 댐에 작용하는 동수압의 고전 이론에 대한 재고)

  • Jeong, Yong-Gwon
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.3
    • /
    • pp.195-199
    • /
    • 1997
  • Classical theory of hydrodynamic pressure on dams during earthquakes is revisited and examined with linear transient theory. Because the ground motion during earthquakes is not only transient but also consists of random horizontal and vertical motions, it is proper to treat hydrodynamic pressure on dams with transient theory for random, transient earthquake motions. The present study fines that surface waves are negligible and that the present theory agrees well with the classical theory if the ground motion is horizontal and harmonic with a high frequency.

  • PDF

Fabrication and Processing Method of Ophthalmic Hydrogel Tinted Lens Containing Indium Tin Oxide-Composited Materials

  • Lee, Min-Jae;Lee, Kyung-Mun;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.685-690
    • /
    • 2018
  • In this study, a multifunctional ophthalmic lens material with an electromagnetic shielding effect, high oxygen permeability, and high water content is tested, and its applicability is evaluated. Metal oxide nanoparticles are applied to the ophthalmic lens material for vision correction to shield harmful electromagnetic waves; the pyridine group is used to improve the antibacterial effect; and silicone substituted with urethane and acrylate is employed to increase the oxygen permeability and water content. In addition, multifunctional tinted ophthalmic lens materials are studied using lens materials with an excellent antibacterial effect (2,6-difluoropyridine, 2-fluoro-4-pyridinecarboxylic acid) and functional (UV protection, high wettability) lens materials (2,4-dihydroxy benzophenone, 2-hydroxy-4-(methacryloyloxy)benzophenone). To solve problems such as air bubbles generated during the polymerization process for the manufacturing and turbidity of the lens surface, polymerization conditions in which the defect rate is minimized are determined. The results show that the polymerization temperature and time are most appropriate when they are $110^{\circ}C$ and 40 minutes, respectively. The optimum injection amount of the polymerization solution is 350 ms. The turbid phenomenon that appears in lens processing is improved by 10 to 95 % according to the test time and conditions.

Generation of sub-micron (nano) bubbles and characterization of their fundamental properties

  • Kim, Sangbeom;Kim, Hyoungjun;Han, Mooyoung;Kim, Tschungil
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.382-388
    • /
    • 2019
  • Although nanobubbles attract significant attention, their characteristics and applications have not been thoroughly defined. There are diverse opinions about the definition of nanobubbles and controversy regarding methods that verify their characteristics. This study defines nanobubbles as having a size less than $1{\mu}m$. The generation of these sub-micron (nano) bubbles may be verified by induced coalescence or light scattering. The size of a sub-micron (nano) bubbles may be measured by optical, and confocal laser scanning microscopy. Also, the size may be estimated by the relationship of bubble size with the dissolved oxygen concentration. However, further research is required to accurately define the average bubble size. The zeta potential of sub-micron (nano) bubbles decreases as pH increases, and this trend is consistent for micron bubbles. When the bubble size is reduced to about 700-900 nm, they become stationary in water and lose buoyancy. This characteristic means that measuring the concentration of sub-micron (nano) bubbles by volume may be possible by irradiating them with ultrasonic waves, causing them to merge into micron bubbles. As mass transfer is a function of surface area and rising velocity, this strongly indicates that the application of sub-micron (nano) bubbles may significantly increase mass transfer rates in advanced oxidation and aeration processes.