• Title/Summary/Keyword: Surface water quality

Search Result 1,369, Processing Time 0.031 seconds

A Study on Proposal of Landscape Management Improvement on the Quantitative Analysis of National Parks (국립공원(國立公園) 자연경관(自然景觀)의 계량적(計量的) 분석(分析)을 통(通)한 경관관리(景觀管理) 개선방안(改善方案)에 관(關)한 연구)

  • Kim, Sei Cheon
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.1
    • /
    • pp.32-41
    • /
    • 1991
  • This study is focusted to the national park of Korean typical mountain Chi-ri, its visual resources of forests, and practiced inspectind course by way of hypothesis and tests, to show visual resource management objectively, and that of quantitative basic data. spatial image structure measured by Semantic Differential(S.D.) Scale was shown through factor analysis algorithm for the analyzing psychological amount and examined the flowing out of decisive factor and the objective importance related mutual factors by appling the measurement of visual quality. Also, it has been investigated the differences between the degrees of expectation which is used before and of satisfaction which is used, by appling instrumental expectation theory. And showed patterns of investigation area through factor analyzing algorithm. As a national Park, visual factors that have natural landscape harmonized forest, sky, surface of the water, curious stones and rocks, temples should be escalate their values affirmatively so as to be the scenery of pointed direction and enjoyable, and it is needs the techniques visual resource management and its controlling technique to make artificial structures more intentional planning and systemical setting. Manmade distinctive quality in the spatials that affect complementally or harmonizingly, should be received considering relations between the distifution and joining which in line with various visual presenting massive factors. More than that, it is needed united basic standard to the beauty of arrangements which contain visual continuity considered balance between nature and human work, simplicity of structural types, assimilation, emphasis, unification of different factors and pro rata.

  • PDF

Quality Characteristics of Sulgidduck Using Dry Rice Powder Added with Different Amounts of Milk (우유를 첨가한 건식 쌀가루 설기떡의 품질 특성)

  • Park, Young-Mi;Yoon, Hye-Hyun
    • Culinary science and hospitality research
    • /
    • v.18 no.5
    • /
    • pp.267-278
    • /
    • 2012
  • The purpose of this study was to investigate the quality characteristics of Sulgidduck made with commercial dry rice powder, providing an optimal milk ratio and soaking time for dry powder in water to make Sulgidduck using dry rice powder. The Sulgidduk samples with dry rice powder were prepared with two soaking times (0, 30 min) and different amounts of milk (0, 20, 40, 60%), and analyzed for moisture content, Hunter's color value, texture characteristics and sensory evaluation. The moisture content of the samples ranged from 36.37% to 39.80% and the highest moisture quantity was showed in the group with 20% of milk and 30min of soaking time(SM20). The L-value was the highest in the group with 20% of milk and 0min of soaking time(M20). The b-value was increased with the amount of milk and soaking time increased, showing the highest in the group with 60% of milk and 30min of soaking time(SM60). TPA showed that SM20 had the lowest hardness and the highest adhesiveness. Chewiness, gumminess and cohesiveness were the highest in the group with 60% of milk and 0min of soaking time(M60). Based on quantitative descriptive sensory evaluations, the score of white color and moistness was showed high in the group with 0% of milk and 0min of soaking time(M0), and white powder on the surface was shown the most in the group with 20% of milk and 30min of soaking time(SM20). The score of moistness, springiness and chewiness were highest in the group with 20% of milk and 0min of soaking time(M20). Sulgidduk made with 20% of milk and 0min of soaking time(M20) was the most preferable in color, flavor, taste, and overall acceptability.

  • PDF

Removal of 1,4-dioxane in Ozone and Activated Carbon Process (오존과 활성탄 공정해서의 1,4-Dioxane 제거 특성)

  • Son, Hee-Jong;Choi, Young-Ik;Bae, Sang-Dae;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1280-1286
    • /
    • 2006
  • Three different virgin activated carbons made of each coal(Calgon), coconut(Samchully) and wood(Picabiol) based activated carbon(AC) were tested for an adsorption performance of 1,4-dioxane in a continuous adsorption column. Breakthrough behavior was Investigated that the breakthrough points of coal, coconut and wood based AC were observed as 3600 bed volumn(BV), 1440 BV and 144 BV respectively. Adsorption capacity(X/M) of coal, coconut and wood based AC was observed. The reported results of adsorption capacity showed that coal based AC was highest(578.9 ${\mu}g/g$), coconut based AC was intermediate(142.3 ${\mu}g/g$) and wood based AC was lowest(7.4 ${\mu}g/g$) due to increasing specific surface area. Moreover, carbon usage rates(CURs) for coal, coconut and wood based AC had been shown as 0.48 g/day, 1.41 g/day and 6.9 g/day respectively. The constant characteristic of the system, k of coal based AC was found to be 91.5 and k of coconut based AC was found to be 17.9. Removal efficiencies of 1,4-dioxane with different ozonation dosages(2 and 5 mg/L) for 20 min ozonation had been shown 38% and 87% respectively. There was no observation for biological removal of 1.4-dioxane by attached micro-organisms when used(3.1 years and over 5 years) biological activated carbon(BAC) without pretreatment of oxidation were employed. When a combination of ozonation(2 mg/L and 5 mg/L) and BAC process for $10{\sim}30$ min was applied, removal efficiency for 1,4-dioxine increased only $2{\sim}6%$ compared to only applying ozonation. Therefore removal efficiency of BAC process prior to using oxidation was proven to negligible. Consequently, the results presented in this paper provide a better insight into the adsorption performance of 1,4-dioxane. This observation suggests that using virgin activated carbon made of coal is the best selection for removal of 1,4-dioxane in the water treatment for an advanced treatment. It is clear from this research that longer EBCT for ozonation or higher ozone concentration are more effective operation methods for removal of 1,4-dioxane than longer EBCT in the BAC process.

Growth and Physiological Characteristics of Five Common Foliage Plant Species Grown under the Influence of Static Magnetic Field (정자기장 처리에 따른 실내 관엽식물의 생육 및 생리적 특성 변화)

  • Lee, Seong Han;Woo, Su Young;Kwak, Myung Ja
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.484-492
    • /
    • 2012
  • The present study aimed to investigate the effect of static magnetic field (SMF) on the growth and physiological characteristics of common indoor plant species. Five foliage plant species, Spathiphyllum spp., Ardisia pusilla DC., Syngonium podophyllum, Peperomia pereskiifolia, and Pilea cadierei were potted into plastic pot equipped with round type anisotropic sintered NdFeB permanent magnet inside the pot. The surface magnetic flux density of each magnet was 3,500 G. After 6 months of growth period, the biomass accumulations of Spathiphyllum, A. pusilla, and P. cadierei under SMF were statistically higher than those of controls. Tissue water content also increased under the influence of SMF in most species. The photosynthetic rate of Spathiphyllum under SMF significantly increased but other species showed no significant difference compared with control. Although there was no significant increase in the photosynthetic rates of A. pusilla, and P. cadierei, they showed remarkable increase in total fresh weight under SMF. This suggests that the demand of assimilates for normal metabolism could be decreased under magnetic influence and thereby biomass accumulation could be more favored. But this is not always true for all plant species because P. pereskiifolia in this experiment, showed no changes in both photosynthetic rate and biomass accumulation. Leaf nitrogen and chlorophyll contents were enhanced significantly in most plant species under influence of SMF. Chlorophyll a/b ratio also increased by SMF. Although there might be a limitation depending on plant species, these results suggest that long-term exposure to SMF might allow plant to have an enhanced acclimation capacity against environmental fluctuations and optimal application of SMF could increase the practical use of indoor plants such as an attempt to improve indoor air quality.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

Changes of Microbial Community Associated with Construction Method and Maintenance Practise on Soil Profile in Golf Courses (지반 조성과 관리방법에 따른 골프장 토양내 미생물 군집의 변화)

  • Moon, Kyung-Hee;Kim, Ki-Dong;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.219-228
    • /
    • 2009
  • The construction procedures and artificial turf maintenance program on golf course definitely influence on the distortion of its environment. Soil microbial communities in soil profile were affected directly by those practises on turf areas. In Jeju island, the environmental impact assessment has been required to apply the first quality class granular activated carbon(GAC), which has a high absorbent character to agricultural chemicals, on the soil profiles of golf green system to reduce the pesticide leaching to ground water. This research was carried out to analyze the changes of microbial communities and chemical properties on soil profiles where GAC had been applied at the construction stage at two golf courses in Jeju. The changes of soil microbial population and chemical properties associated with construction methods of soil profile and agrochemical management program were analyzed by monthly at the surface and sub-soil profiles during April through October, 2007. The total numbers of bacteria and fungi, soil moisture content, soil physio-chemical properties were measured on greens and fairways of the both golf courses with different GAC treatment on the green and fairway soil profiles. The results showed that GAC had positive effects on the water holding capacity, pH and EC, however, it did not improved the holding capacity of available nutrients ${NO_3}^-,{NH_4}^+$, and phosphorus by its sorption phenomenon. In microbial count test, the total numbers of bacteria and fungi showed a great variation during sampling dates. That may directly relate to the agrochemical application, however, the ratio of total bacterial number versus total fungus number showed a constant value on a sub-soil of 15~30cm depth. Thus, the construction method of GAC in soil profile, and application of fertilizer and pesticide, both impacted on the changes of microbial population. It's means that the construction method of soil profile and turf management using agro-materials might greatly affect on the turfgrass culture and the environment of golf course.

Wetland Habitat Assessement Utilizing TDI(Trophic Diatom Index) (부착돌말영양지수(TDI)를 활용한 습지환경 평가)

  • Kim, Seong-Ki;Choi, Jong-Yun
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.525-538
    • /
    • 2019
  • The purpose of this study was to analyze the habitat status and species diversity of benthic diatoms and estimate the applicability of TDI (Trophic Diatom Index) to obtain the basic data for the identification and management of created wetlands in the Nakdong River. We observed a total of 38 families and 173 species of benthic diatom during the survey period, and spring and autumn showed a similar number of species of 156 and 154, respectively. The result of the SOM (Self-Organizing Map) analysis showed that the distribution of benthic diatom was sensitive to environmental factors such as nutrient concentration and rainfall in each wetland. The cluster 1 was characterized by the survey sites of autumn mostly and consisted of points of high TDI, although the nutrients such as total phosphorus and total nitrogen were low, and the species number and abundance of diatoms were low. Conversely, cluster 4 was characterized by the survey sites of spring mostly and consisted of points of low TDI, even though total nitrogen was high. Considering that most of the created wetlands had the reduced inflow and outflow, the increased flow rate in the summer lowers nutrient values in autumn, and the species number and abundance of benthic diatom decreases due to the increase of turbidity, which reduces the light penetrations to the substrates. On the contrary, the TDI value is low in spring because the low water level causes insufficient substrate surface to the benthic diatoms, and it is too early for the establishment and development of saprophilous species. Although various studies have used TDI as an indicator for evaluating the habitat environment and water quality, it is not a good evaluation indicator in this study since the nutrient concentration in the wetlands mostly high as they have a low flow rate and are close to the stagnant area. Nevertheless, additional periodic surveys that comprehensively reflect the fact that the summer rainfall and inflow/outflow regulating function might affect the species diversity and distribution of benthic diatoms are necessary.

A Performance Comparison of Land-Based Floating Debris Detection Based on Deep Learning and Its Field Applications (딥러닝 기반 육상기인 부유쓰레기 탐지 모델 성능 비교 및 현장 적용성 평가)

  • Suho Bak;Seon Woong Jang;Heung-Min Kim;Tak-Young Kim;Geon Hui Ye
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.193-205
    • /
    • 2023
  • A large amount of floating debris from land-based sources during heavy rainfall has negative social, economic, and environmental impacts, but there is a lack of monitoring systems for floating debris accumulation areas and amounts. With the recent development of artificial intelligence technology, there is a need to quickly and efficiently study large areas of water systems using drone imagery and deep learning-based object detection models. In this study, we acquired various images as well as drone images and trained with You Only Look Once (YOLO)v5s and the recently developed YOLO7 and YOLOv8s to compare the performance of each model to propose an efficient detection technique for land-based floating debris. The qualitative performance evaluation of each model showed that all three models are good at detecting floating debris under normal circumstances, but the YOLOv8s model missed or duplicated objects when the image was overexposed or the water surface was highly reflective of sunlight. The quantitative performance evaluation showed that YOLOv7 had the best performance with a mean Average Precision (intersection over union, IoU 0.5) of 0.940, which was better than YOLOv5s (0.922) and YOLOv8s (0.922). As a result of generating distortion in the color and high-frequency components to compare the performance of models according to data quality, the performance degradation of the YOLOv8s model was the most obvious, and the YOLOv7 model showed the lowest performance degradation. This study confirms that the YOLOv7 model is more robust than the YOLOv5s and YOLOv8s models in detecting land-based floating debris. The deep learning-based floating debris detection technique proposed in this study can identify the spatial distribution of floating debris by category, which can contribute to the planning of future cleanup work.

Characterization of the Behavior of Naturally Occurring Radioactive Elements in the Groundwater within the Chiaksan Gneiss Complex : Focusing on the Mineralogical Interpretation of Artificial Weathering Experiments (치악산 편마암 지질의 지하수 내 자연 방사성 원소의 거동 특성 연구: 인공풍화 실험을 통한 광물학적 해석)

  • Woo-Chun Lee;Sang-Woo Lee;Hyeong-Gyu Kim;Do-Hwan Jeong;Moon-Su Kim;Hyun-Koo Kim;Soon-Oh Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.289-302
    • /
    • 2023
  • The study area was Gangnim-myeon, Hoengseong-gun, Gangwon-do, composed of the Chiaksan gneiss complex, and it was revealed that the concentrations of uranium (U) and thorium (Th) within the groundwater of the study area exceeded their water quality standards. Hence, artificial weathering experiments were conducted to elucidate mineralogically the mechanisms of their leaching using drilling cores obtained from the corresponding groundwater aquifers. First of all, the mineralogical compositions of core samples were observed, and the results indicated that the content of clinochlore, a member of the chlorite group of minerals that can form through low- and intermediate-temperature metamorphisms, was relatively higher. In addition, the Th concentration was measured ten times higher than that of U. The results of artificial weathering experiments suggested that the Th concentrations gradually increased through the dissolution of radioactive-element-bearing minerals up to the first day, and then they tended to decrease. It could be attributed to the fact that Th was leached with the dissolution of thorite, which might be a secondary mineral, and then dissolved Th was re-precipitated as the various forms of salt, such as sulfate. Even though the U content was lower than that of Th in the core samples, the U concentration was one hundred times higher than that of Th after the weathering experiments. It is likely caused by the gradual dissolution and desorption of U included in intensively weathered thorite or adsorbed as a form of UO22+ on the mineral surface. In addition, the leaching tendency of U and Th was positively correlated with the bicarbonate concentration. However, the concentrations between U and Th in groundwater exhibited a relatively lower correlation, which might result from the fact that they occurred from different sources, as aforementioned. Among various kinetic models, the parabolic diffusion and pseudo-second-order kinetic models were confirmed to best fit the dissolution kinetics of both elements. The period that would be taken for the U concentration to exceed its drinking-water standard was inferred using the regressed parameters of the best-fitted models, and the duration of 29.4 years was predicted in the neutral-pH aquifers with relatively higher concentrations of HCO3, indicating that U could be relatively quickly leached out into groundwater.

Nitrogen Removal Rate of A Subsurface Flow Treatment Wetland System Constructed on Floodplain During Its Initial Operating Stage (하천고수부지 수질정화 여과습지의 초기운영단계 질소제거)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.4
    • /
    • pp.278-283
    • /
    • 2003
  • This study was carried out to examine the nitrogen removal rate of a subsurface-flow treatment wetland system which was constructed on floodplain of the Kwangju River from May to June 2001. Its dimensions were 29m in length, 9m in width and 0.65m in depth. A bottom layer of 45cm in depth was filled with crushed granite with about $15{\sim}30\;mm$ in diameter and a middle layer of 10cm in depth had pea pebbles with about 10 mm in diameter. An upper layer of 5 cm in depth contained course sand. Reeds (Phragmites australis) were transplanted on the surface of the system. They were dug out of natural wetlands and stems were cut at about 40 cm height from their bottom ends. Water of the Kwangju River flowed into it via a pipe by gravity flow and its effluent was funneled back into the river. The height of reed stems was 44.2 cm in July 2001 and 75.3cm in September 2001. The number of stems was increased from $80\;stems/m^2$ in July 2001 to $136\;stems/m^2$ in September 2001. Volume and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Inflow and outflow averaged 40.0 and $39.2\;m^3/day$, respectively. Hydraulic detention time was about 1.5 days. Average nitrogen uptake by reeds was $69.31\;N\;mg/m^2/day$. Removal rate of $NO_3-N$, $NH_3-N$, T-N averaged 195.58, 53.65, and $628.44\;mg/m^2/day$, respectively. Changes of $NO_3-N$ and $NH_3-N$ abatement rates were closely related to those of wetland temperatures. The lower removal rate of nitrogen species compared with that of subsurface-flow wetlands operating in North America could be attributed to the initial stage of the system and inclusion of two cold months into the six-month monitoring period. Increase of standing density of reeds within a few years will develop both root zones suitable for the nitrification of ammonia and surface layer substrates beneficial to the denitrification of nitrates into nitrogen gases, which may lead to increment in the nitrogen retention rate.