Removal of 1,4-dioxane in Ozone and Activated Carbon Process

오존과 활성탄 공정해서의 1,4-Dioxane 제거 특성

  • Son, Hee-Jong (Water Quality Research Institute, Waterworks Headquarter, Busan) ;
  • Choi, Young-Ik (Department of Environmental Engineering, Silla University) ;
  • Bae, Sang-Dae (Department of Environmental Engineering, Silla University) ;
  • Jung, Chul-Woo (Ulsan Regional Innovation Agency, Ulsan Industry Promotion Techno Park)
  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 최영익 (신라대학교 환경공학과) ;
  • 배상대 (신라대학교 환경공학과) ;
  • 정철우 (울산산업진흥TP 전략산업기획단)
  • Published : 2006.12.31

Abstract

Three different virgin activated carbons made of each coal(Calgon), coconut(Samchully) and wood(Picabiol) based activated carbon(AC) were tested for an adsorption performance of 1,4-dioxane in a continuous adsorption column. Breakthrough behavior was Investigated that the breakthrough points of coal, coconut and wood based AC were observed as 3600 bed volumn(BV), 1440 BV and 144 BV respectively. Adsorption capacity(X/M) of coal, coconut and wood based AC was observed. The reported results of adsorption capacity showed that coal based AC was highest(578.9 ${\mu}g/g$), coconut based AC was intermediate(142.3 ${\mu}g/g$) and wood based AC was lowest(7.4 ${\mu}g/g$) due to increasing specific surface area. Moreover, carbon usage rates(CURs) for coal, coconut and wood based AC had been shown as 0.48 g/day, 1.41 g/day and 6.9 g/day respectively. The constant characteristic of the system, k of coal based AC was found to be 91.5 and k of coconut based AC was found to be 17.9. Removal efficiencies of 1,4-dioxane with different ozonation dosages(2 and 5 mg/L) for 20 min ozonation had been shown 38% and 87% respectively. There was no observation for biological removal of 1.4-dioxane by attached micro-organisms when used(3.1 years and over 5 years) biological activated carbon(BAC) without pretreatment of oxidation were employed. When a combination of ozonation(2 mg/L and 5 mg/L) and BAC process for $10{\sim}30$ min was applied, removal efficiency for 1,4-dioxine increased only $2{\sim}6%$ compared to only applying ozonation. Therefore removal efficiency of BAC process prior to using oxidation was proven to negligible. Consequently, the results presented in this paper provide a better insight into the adsorption performance of 1,4-dioxane. This observation suggests that using virgin activated carbon made of coal is the best selection for removal of 1,4-dioxane in the water treatment for an advanced treatment. It is clear from this research that longer EBCT for ozonation or higher ozone concentration are more effective operation methods for removal of 1,4-dioxane than longer EBCT in the BAC process.

활성탄 재질별 신탄에서의 1,4-dioxane에 대한 흡착능을 평가한 결과, 석탄계 신탄의 파과시점은 BV 3600, 야자계와 목탄계 신탄의 경우는 BV 1440과 144 정도로 나타났다. 1,4-dioxane에 대한 최대 흡착량(X/M)은 석탄계 활성탄이 578.9 ${\mu}g/g$으로 가장 높았으며, 다음으로 야자계 142.3 ${\mu}g/g$, 목탄계 7.4 ${\mu}g/g$이었다. CUR은 석탄계 활성탄의 경우 0.48 g/일, 야자계와 목탄계 활성탄은 1.41 g/일과 6.9 g/일로 나타났으며 야자계와 석탄계 활성탄의 k값은 17.9와 91.5로 나타났다. 오존 단독처리 공정에서의 1,4-dioxane 제거특성을 평가해 본 결과, 2 mg/L의 오존 투입농도에서는 1,4-dioxane의 제거율이 38%인 반면 5 mg/L 고농도 오존처리로 87%의 제거율을 나타내었다. 전처리 산화공정이 없는 BAC 공정(3.1년 및 5년 이상 사용탄)에서는 부착 미생물에 의한 생물분해에 의한 제거는 없었으며 2와 5 mg/L $O_3+BAC$ 공정에서 EBCT를 $10{\sim}30$분으로 하여 운전하였을 경우 오존 단독공정에 비해 $2%{\sim}6%$ 정도 제거율이 증가한 것으로 나타나 오존처리 후의 BAC 공정은 1,4-dioxane 제거에 큰 효과가 없었다. 1,4-dioxane이 고도 정수처리공정으로 유입되었을 시 GAC 공정을 채택한 정수장의 경우 석탄계 신탄을 사용하는 것이 가장 바람직하며, 오존/BAC 공정의 경우는 BAC 접촉조의 EBCT를 증가시키는 운전 방법 보다 오존의 투입농도를 증가시키거나 오존 접촉조의 체류시간을 증가시켜 운전하는 방식이 1,4-dioxane 제거에 대해 효과적인 운전 방법으로 조사되었다.

Keywords

References

  1. Sandy, T., Grady, Jr. C. P., Meininger, S., and Boe, R., 'Biological treatment of 1,4-dioxane in wastewater from and intergrated polyethylene terephthalate(PET),' Proceedings of Annual Industrial Waters Technical and Regulatory Conference, Charleston, SC, U.S.A., 88-117(2001)
  2. Stefan, M. I, and Bolton, J. R., 'Mechanism of the degradation of 1,4-dioxane in dilute aqueous solution using the UV/hydrogen peroxide process,' Environ. Sci. Technol., 32, 1588-1595(1998) https://doi.org/10.1021/es970633m
  3. National Industrial Chemicals Notification and Assessment Scheme(NICNAS), 1,4-dioxane Priority Existing Chemical No. 7(1998)
  4. Adams, C. D., Scanlan, P. A., and Secrist, N. D., 'Oxidation and biodegradability enhancement of 1,4-dioxane using hydrogen peroxide and ozone,' Environ. Sci. Technol., 28, 1812 -1818(1994) https://doi.org/10.1021/es00060a010
  5. Suh, J. H. and Mohseni, M., 'A study on the relationship between biodegradability enhancement and oxidation of 1,4-dioxane using ozone and hydrogen peroxide,' Water Res., 38, 2596-2604(2004) https://doi.org/10.1016/j.watres.2004.03.002
  6. 임재림, 이경혁, 채선하, 김순흥, 안효원, '정수처리시스템에서 1,4-dioxane의 제거방안,' 대한환경공학회지, 26(11), 1238-1243(2004)
  7. Kim, S. G., Choi, K. J., Lee, H. J., Ji, K. W., Yu, P. J., and Lee, Y. D., 'Comparison of oxidations for 1,4-dioxane removal,' Proceedings of 4th IWA Oxidation Technology Conference for Water and Wastewater Treatment, 15-17 May, Goslar, Germany(2006)
  8. Zenker, M. J., Borden, R. C., and Barlaz, M. A., 'Occurrence and treatment of 1,4-dioxane in aqueous environments,' Environ. Eng. Sci., 20, 423-432(2003) https://doi.org/10.1089/109287503768335913
  9. 한국표준협회, KS 활성탄 시험방법, KS M 1802(1998)
  10. 환경부, 수처리제의 기준과 규격 및 표시기준, 환경부 고시 제1999-173호(1999)
  11. MBC 시사매거진 2580, 2004.. 6. 12. PM 10
  12. Choi,.K. J., Kim, S. G., Kim, C. W., and Kim, S. H., 'Effects of activated carbon types and service life on removal of endocrine disrupting chemicals: arnitrol, nonylphenol and bisphenol-A,' Chemosphere, 58, 1535-1545(2005) https://doi.org/10.1016/j.chemosphere.2004.11.080
  13. 손희종, 노재순, 김상구, 배석문, 강임석, '활성탄 공정에서의 염소 소독부산물 제거특성,' 대한환경공학회지, 27(7), 762-770(2005)
  14. Snoeyink, V. L., 'Adsorption of Organic Compounds,' In Water Quality and Treatment: A Handbook of Community Water Supplies, 4th Ed., Edited by Pontius, F. W., McGraw-Hill Inc., New York, 781-855(1990)