• Title/Summary/Keyword: Surface water heat exchanger

Search Result 92, Processing Time 0.027 seconds

Heating Performance Analysis of Ground-Source Heat Pump (GSHP) System using Hybrid Ground Heat Exchanger (HGHE) (하이브리드 지중열교환기 적용 지열 히트펌프 시스템의 난방 성능 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.3
    • /
    • pp.8-16
    • /
    • 2020
  • This paper presents the heating performance analysis results of a ground-source heat pump (GSHP) system using hybrid ground heat exchanger (HGHE). In this paper, the HGHE refers to the ground heat exchanger (GHE) using both a surface water heat exchanger (SWHE) and a vertical GHE. In order to evaluate the system performance, we installed monitoring sensors for measuring temperatures and power consumption, and then measured operation data with 4 different load burdened ratios of the HGHE. During the entire measurement period, the average heating capacity of the heat pump was 37.3 kW. In addition, the compressor of the heat pump consumed 9.4 kW of power, while the circulating pump of the HGHE used 6.7 kW of power. Therefore, the average heating coefficient of performance (COP) for the heat pump unit was 4.0, while the system including the circulating pump was 2.7. Finally, the parallel use of SWHE and VGHE was beneficial to the system performance; however, further researches are needed to optimize the design data for various load ratios of the HGHE.

Cooling Performance Analysis of Ground-Source Heat Pump (GSHP) System with Hybrid Ground Heat Exchanger (HGHE) (하이브리드 지중열교환기 적용 히트펌프 시스템의 냉방 성능 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.43-52
    • /
    • 2018
  • This paper presents the cooling performance analysis results of a ground-source heat pump (GSHP) system using hybrid ground heat exchanger (HGHE). In this paper, the HGHE refers to the ground heat exchanger (GHE) using both a vertical GHE and a surface water heat exchanger (SWHE). In order to evaluate the system performance, we installed monitoring sensors for measuring temperatures and power consumption, and then measured operation data with 4 different load burdened ratios of the hybrid GHE, Mode 1~Mode 4. The measurement results show that the system with HGHE mainly operates in Mode 1 and Mode 2 over the entire measurement period. The average cooling coefficient of performance (COP) for heat pump unit was 5.18, while the system was 2.79. In steady state, the heat pump COP was slightly decreased with an increase of entering source temperature. In addition, the parallel use of SWHE and VGHE was beneficial to the system performance; however, further research are needed to optimize the design data for various load ratios of the HGHE.

Experimental Study on Liquid Desiccant Distribution Characteristics at a Dehumidifier with Extended Surface (확장표면을 적용한 액체식 제습기에서 제습액 분배 특성에 관한 실험적 연구)

  • Lee, Min-Su;Chang, Young-Soo;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.645-649
    • /
    • 2009
  • Liquid desiccant cooling technology can supply cooling by using waste heat and solar heat which are hard to use effectively. For compact and efficient design of a dehumidifier, it is important to sustain sufficient heat and mass transfer surface area for water vapor diffusion from air to liquid desiccant on heat exchanger. In this study, the plate type heat exchanger is adopted which has extended surface, and hydrophilic coating and porous layer coating are adopted to enhance surface wettedness. PP(polypropylene) plate is coated by porous layer and PET(polyethylene terephthalate) non-woven fabric is coated by hydrophilic polymer. These coated surfaces have porous structure, so that falling liquid film spreads widely on the coated surface foaming thin liquid film by capillary force. The temperature of liquid desiccant increases during dehumidification process by latent heat absorption, which leads to loss of dehumidification capacity. Liquid desiccant is cooled by cooling water flowing in plate heat exchanger. On the plate side, the liquid desiccant can be cooled by internal cooling. However the liquid desiccant on extended surface should be moved and cooled at heat exchanger surface. Optimal mixing and distribution of liquid desiccant between extended surface and plate heat exchanger surface is essential design parameter. The experiment has been conducted to verify effective surface treatment and distribution characteristics by measuring wall side flow rate and visualization test. It is observed that hydrophilic and porous layer coating have excellent wettedness, and the distribution can be regulated by adopting holes on extended surface.

  • PDF

An Experimental Study on the Defrosting Behavior of a Fin-Tube Heat Exchanger

  • Lee, Kwan-Soo;Jhee, Sung
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.101-111
    • /
    • 1999
  • The effect of various conditions of frosting and defrosting on the defrosting behavior of a fin-tube heat exchanger has been examined experimentally. An electric heater is used for defrosting in a fin-tube heat exchanger. There are several local maxima in the water draining rate. The amount of residual water on the heat exchanger after completion of defrosting is kept constant due to surface tension on the heat exchanger. Without considering degradation of the thermal performance due to the frosting, the defrosting efficiency is improved with increasing amount of frost irrespective of the frosting condition. The defrosting behavior is affected by frosting density as well as frost accumulation, both of which vary with the experimental operating conditions. The heat loss to the surrounding air decreases, and melting and defrosting efficiencies show high values with decreasing heat input.

  • PDF

Cooling Performance of Geothermal Heat Pump Using Surface Water Heat Exchanger (지표수 열교환기 적용 지열 히트펌프 시스템의 냉방 성능)

  • Lim, Hyo Jae;Kong, Hyoung Jin;Sohn, Byonghu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.316-326
    • /
    • 2017
  • Commercial buildings and institutions are predominantly cooled, thereby dissipating excess heat to a vertical ground heat exchanger (VGHE), than heat extracted over an annual cycle. Surface waters, such as lakes and ponds, provide a cost-effective means of reducing the VGHE length, and in balancing the thermal loads to the ground. This paper presents the measurement and analysis of the cooling performance of ground-coupled heat pump (GCHP) system, using surface water heat exchanger (SWHE) submerged in an artificial pond. In order to measure the performance of the system, we installed monitoring equipment, including sensors, for assessing the temperature and power consumption, after which the operation parameters were determined. The results from the thermal performance test for the SWHE indicate that the temperatures at the outlet of the SWHE and within the pond were affected by outdoor air temperature. In addition, the results reveal similar variation trends on temperatures; however, the peak temperatures of the SWHE were somewhat greater than those of outdoor air, due to the thermal capacity of the pond. Analyzing the cooling performance over the measurement period, the average coefficient of performance (COP) of heat pump was found to be 5.71, while that for the entire system was 2.99.

Study on three-dimensional numerical simulation of shell and tube heat exchanger of the surface ship under marine conditions

  • Yi Liao;Qi Cai;Shaopeng He;Mingjun Wang;Hongguang Xiao;Zili Gong;Cong Wang;Zhen Jia;Tangtao Feng;Suizheng Qiu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1233-1243
    • /
    • 2023
  • Shell-and-tube heat exchanger (STHX) is widely used by virtue of its simple structure and high reliability, especially in a space-constrained surface ship. For the STHX of the surface ship, roll, pitch and other motion of the ship will affect the heat transfer performance, resistance characteristics and structural strength of the heat exchanger. Therefore, it is urgent to carry out numerical simulation research on three-dimensional thermal hydraulic characteristics of surface ship STHX under the marine conditions. In this paper, the numerical simulation of marine shell and tube heat exchanger of surface ship was carried out using the porous media model. Firstly, the mathematical physical model and numerical method are validated based on the experimental data of a marine engine cooling water shell and tube heat exchanger. The simulation results are in good agreement with the experimental results. The prediction errors of pressure drop and heat transfer are less than 10% and 1% respectively. The effect of marine conditions on the heat transfer characteristics of the heat exchanger is investigated by introducing the additional force model of marine condition to evaluate the effect of different motion parameters on the heat transfer performance of the heat exchanger. This study could provide a reference for the optimization of marine heat exchanger design.

The Frost and Defrost Performances of Fin-and-Tube Exchangers with Different Surface Characteristics (표면특성이 다른 두 핀-관 열교환기의 착상 및 제상 성능)

  • 신종민;최봉준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.525-531
    • /
    • 2002
  • The effects of different surface hydrophilicity on frosting and defrosting characteristic were experimentally investigated. Mass of frost and water hold-up was measured. Results showed that no significant difference in the frost mass was found between the two different surfaces while the water hold-up of heat exchanger court be reduced by the enhancement of surface hydrophilicity. Also, the defrosting efficiency m hydrophilic surface was improved by 76%. It was expected that hydrophilic heat exchanger could provide the improvements in both thermal-hydraulic performances and system reliability during frost/defrost operating in refrigeration systems.

A Fundamental Study on the Nutrient Solution Cooling System Utilizing Ground Water (지하수를 이용한 양액냉각시스템 개발에 관한 기초연구)

  • 남상운;손정익;김문기
    • Journal of Bio-Environment Control
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1993
  • Experimental and theoretical analyses were carried out to investigate the heat exchange characteristics of the nutrient solution cooling system utilizing ground water. The material of heat exchanger used in the experiment was polyethylene and the cross-flow type was adapted in which nutrient solution was mixed and ground water unmixed. For the exchanger surface area of 0.33$m^2$ and flow rates of ground water of 1-6$\ell$/min, NTU(number of transfer units) and effectiveness of experimental heat exchanger were 0.1-0.45 and 10-35%, respectively. Therefore these results showed that the hydroponic greenhouse of 1,000$m^2$(300 pyong) with the ground water of 10$m^2$/day could cover about 55-70% of maximum cooling load in summer.

  • PDF

An experimental study of behavior of defrosting on the fin-tube heat exchanger (핀-관 열교환기에 대한 제상 거동에 관한 실험적 연구)

  • Lee, Kwan-Soo;Kim, Kyu-Woo;Ji, Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.649-657
    • /
    • 1998
  • In this study, the effects of the various conditions of frosting and defrosting on the behavior of defrosting in a fin-tube heat exchanger have been examined experimentally. The electric heater is used for defrosting in a fin-tube heat exchanger It is shown that there are several local maxima in the water draining rate. The amount of residual water on the heat exchanger after the completion of defrosting is kept constant due to surface tension on the heat exchanger. Without considering the degradation of the thermal performance due to the frosting, the defrosting efficiency is improved with increasing amount of the frost irrespective of the frosting condition. The defrosting behavior is affected by the frosting density as well as the frost accumulation, which vary with the experimental operating conditions during the frosting period. The heat loss to the surrounding air decreases, and the melting and defrosting efficiencies show high values with decreasing heat input.

  • PDF

Effects of Cladding and Antifreeze Solution on Cavitation Corrosion of AA3003 Tube of Heat Exchanger for Automobile

  • Young Ran Yoo;Seung Heon Choi;Hyunhak Cho;Young Sik Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.203-214
    • /
    • 2024
  • A heat exchanger is a device designed to transfer heat between two or more fluids. In a vehicle's thermal management system, Al heat exchangers play a critical role in controlling and managing heat for efficient and safe operation of the engine and other components. The fluid used to prevent heat exchangers from overheating the engine is mostly tap water. Heat exchange performance can be maintained at sub-zero temperatures using a solution mixed with antifreeze. Although the fluid flowing through the heat exchanger can reduce the temperature inside the engine, it also has various problems such as cavitation corrosion. Cavitation corrosion characteristics in tap water and corrosion characteristics were evaluated in this study when antifreeze was added for test specimens where AA4045 was cladded on the inner surface of AA3003 tubes of a fin-type heat exchanger. The cavitation corrosion resistance of AA3003 was found to be superior to that of AA4045 regardless of the test solution due to higher corrosion resistance and hardness of AA3003 than those of AA4045. The cavitation corrosion rate of Al alloys increased with the addition of antifreeze.