DOI QR코드

DOI QR Code

Effects of Cladding and Antifreeze Solution on Cavitation Corrosion of AA3003 Tube of Heat Exchanger for Automobile

  • Young Ran Yoo (Materials Research Centre for Energy and Clean Technology, Andong National University) ;
  • Seung Heon Choi (Department of Materials Science and Engineering, Andong National University) ;
  • Hyunhak Cho (Department of Materials Science and Engineering, Andong National University) ;
  • Young Sik Kim (Materials Research Centre for Energy and Clean Technology, Andong National University)
  • Received : 2024.05.31
  • Accepted : 2024.06.20
  • Published : 2024.06.30

Abstract

A heat exchanger is a device designed to transfer heat between two or more fluids. In a vehicle's thermal management system, Al heat exchangers play a critical role in controlling and managing heat for efficient and safe operation of the engine and other components. The fluid used to prevent heat exchangers from overheating the engine is mostly tap water. Heat exchange performance can be maintained at sub-zero temperatures using a solution mixed with antifreeze. Although the fluid flowing through the heat exchanger can reduce the temperature inside the engine, it also has various problems such as cavitation corrosion. Cavitation corrosion characteristics in tap water and corrosion characteristics were evaluated in this study when antifreeze was added for test specimens where AA4045 was cladded on the inner surface of AA3003 tubes of a fin-type heat exchanger. The cavitation corrosion resistance of AA3003 was found to be superior to that of AA4045 regardless of the test solution due to higher corrosion resistance and hardness of AA3003 than those of AA4045. The cavitation corrosion rate of Al alloys increased with the addition of antifreeze.

Keywords

Acknowledgement

This research was supported by a grant from the 2023-2024 Research funds of Andong National University. And, this paper was supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (RS-2024-00409639, HRD Program for Industrial Innovation).

References

  1. J. M. Kim, J. P. Lee, C. E. Lee, S. M. Kum, Characteristics of Thermal Efficiency with Changing Distances between Tubes for Heat Exchanger, Journal of energy engineering, 19, 3, 177 (2010). 
  2. W. S Miller, L. Zhuang, J. Bottema, A. J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Recent Development in Aluminium Alloys for the Automotive Industry, Materials science and engineering: A, 280, 37 (2000). Doi: https://doi.org/10.1016/S0921-5093(99)00653-X 
  3. W. Faes, S. Lecompte, Z. Y. Ahmed, J. V. Bael, R. Salenbien, K. Verbeken and M. D. Paepe, Corrosion and Corrosion Prevention in Heat Exchangers, Corrosion Reviews, 37, 131 (2019). Doi: https://doi.org/10.1515/corrrev-2018-0054 
  4. P. D. Srivyas, M. S. Charoo, Application of Hybrid Aluminum Matrix Composite in Automotive Industry, Materials today: Proceedings, 18, 3189 (2019). Doi: https://doi.org/10.1016/j.matpr.2019.07.195 
  5. C. W. Kang, T. J. Kim, C. W. Lee, Numerical Analysis on the Characteristics of Thermal Flow in an Automobile Radiator, Journal of the Korean Society of Manufacturing Process Engineers, 18, 55 (2019). Doi: https://doi.org/10.14775/ksmpe.2019.18.6.055 
  6. S. B. Kwak, Ph.D. Thesis, pp. 1 - 2, Hanyang University, Seoul (2011).
  7. A. S. Fitrianto, C. Caing, H. A. Notonegoro, B. Soegijono, Effect of Titanium on Corrosion Behavior of Aluminum Alloy 3104 as a Candidate Material for Radiator Combustion Engines, Flywheel, 7, 12 (2021). Doi: http://dx.doi.org/10.36055/fwl.v0i0.10855 
  8. H. M Ali, H. Ali, H. Liaquat, H. T. B. Maqsood, M. A. Nadir, Experimental Investigation of Convective Heat Transfer Augmentation for Car Radiator using ZnO-Water Nanofluids, Energy, 84, 317 (2015). Doi: https://doi.org/10.1016/j.energy.2015.02.103 
  9. M. Asadikiya, M. Ghorbani, Effect of Inhibitors on the Corrosion of Automotive Aluminum Alloy in Ethylene Glycol-Water Mixture, Corrosion, 67, 126001 (2011). Doi: https://doi.org/10.5006/1.3666860 
  10. O. K. Abiola, J. O. E. Otaigbe, Effect of Common Water Contaminants on the Corrosion of Aluminum Alloys in Ethylene Glycol-Water Solution, Corrosion Science, 50, 242 (2008). Doi: https://doi.org/10.1016/j.corsci.2007.06.013 
  11. J. Zaharieva, M. Milanova, M. Mitov, L. Lutov, S. Manev, D. Todorovsky, Corrosion of Aluminum and Aluminum Alloy in Ethylene Glycol-Water Mixtures, Journal of Alloys and Compounds, 470, 397 (2009). Doi: https://doi.org/10.1016/j.jallcom.2008.02.079 
  12. G. L. F. Mendonca, S. N. Costa, V. N. Freire, P. N. S. Casciano, A. N. Correia, and P. Lima-Neto, Understanding the Corrosion Inhibition of Carbon Steel and Copper in Sulphuric Acid Medium by Amino Acids using Electrochemical Techniques Allied to Molecular Modeling Methods, Corrosion Science, 115, 41 (2017). Doi: https://doi.org/10.1016/j.corsci.2016.11.012 
  13. B. Jegdic, B. Bobic, and S. Linic, Corrosion Behavior of AA2024 Aluminium Alloy in Different Temperatures in NaCl Solution and with the CeCl3 Corrosion Inhibitor, Materials and Corrosion, 71, 352 (2020). Doi: https://doi.org/10.1002/maco.201911219 
  14. S. Liu J. Dong W. W. Guan J. M. Duan R. Y. Jiang Z. P. Feng and W. J. Song, The Synergistic Effect of Na3PO4 and Benzotriazole on the Inhibition of Copper Corrosion in Tetra-n-butylammonium Bromide Aerated Aqueous Solution, Materials and Corrosion, 63, 1017 (2012). Doi: https://doi.org/10.1002/maco.201106346 
  15. Y. R. Yoo, D. H. Kim, G. B. Kim, S. Y. Won, S. H. Choi and Y. S. Kim, Galvanic Corrosion Between Component Parts of Aluminum Alloys for Heat Exchanger of Automobile, Corrosion Science and Technology, 22, 322 (2023). Doi: https://doi.org/10.14773/cst.2023.22.5.322 
  16. L. Niu, Y. F. Cheng, Electrochemical Characterization of Metastable Pitting of 3003 Aluminum Alloy in Ethylene Glycol-Water Solution, Journal of Materials Science, 42, 8613 (2007). Doi: https://doi.org/10.1007/s10853-007-1841-1 
  17. L. Hao, F. Zheng, X. Chen, J. Li, S. Wang, Y. Fan, Erosion Corrosion Behavior of Aluminum in Flowing Deionized Water at Various Temperatures, Materials, 13, 779 (2020). Doi: https://doi.org/10.3390/ma13030779 
  18. D. H. Kim, Y. R. Yoo, and Y. S. Kim, Effect of Water Impingement Conditions on the Degradation of Epoxy Coatings in Tap Water, Corrosion Science and Technology, 21, 327 (2022). Doi: https://doi.org/10.14773/cst.2022.21.5.327 
  19. J. M. Nouri, l. Vasilakos, Y. Yan, Effect of Viscosity and Speed on Oil Cavitation Development in a Single Piston-Ring Lubricant Assembly, lubricants, 7, 88 (2019). Doi: https://doi.org/doi:10.3390/lubricants7100088 
  20. L. Wang, C. Lu, The Effect of Viscosity on the Cavitation Characteristics of High Speed Sleeve Bearing, Journal of Hydrodynamics, 27, 367 (2015). Doi: https://doi.org/10.1016/S1001-6058(15)60494-2 
  21. D. Laougli, F. Beniere, Evaluation of inhibitor efficiency on corrosion of the aluminum heat exchangers and radiators in central heating, Journal of Materials and Environmental Science, 3, 34 (2012). https://www.jmaterenvironsci.com/Document/vol3/3-JMES-66-2011-Laouali.pdf 
  22. X. Han, H. Zhang, B. Shao, L. Li, K. Qin and J. Cui, Interfacial Characteristics and Properties of a Low-cladratio AA4045/AA3003 Cladding Billet Fabricated by Semi-continuous Casting, International Journal of Minerals, Metallurgy, and Materials, 23, 1097 (2016). Doi: https://doi.org/10.1007/s12613-016-1327-8 
  23. M. J. Benoit, I. G. Ogunsanya, S. Winkler, M. J. Worswick, M. A. Wells and C. M. Hansson, Internal Corrosion of Warm Formed Aluminum Alloy Automotive Heat Exchangers. Journal of Materials Engineering and Performance, 30, 2876 (2021). Doi: https://doi.org/10.1007/s11665-021-05616-4 
  24. American Welding Society, Brazing Handbook, 5th ed., American Welding Society, Miami (2007). 
  25. ASTM G32-16, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, ASTM International, West Conshohocken, PA (2016). Doi: https://doi.org/10.1520/G0032-16 
  26. J. M. Jeon, Y. R. Yoo, M. J. Jeong, Y. C. Kim, and Y. S. Kim, Effect of Solution Temperature on the Cavitation Degradation Properties of Epoxy Coatings for Seawater Piping, Corrosion Science and Technology, 20, 325 (2021). Doi: https://doi.org/10.14773/cst.2021.20.6.325 
  27. A. Karabenciov, A. D. Jurchela, I. Bordeasu, M. Popoviciu, N. Birau, A. Lustyan, Considerations upon the Cavitation Erosion Resistance of Stainless Steel with Variable Chromium and Nickel Content, Earth and Environmental Science, 12, 012036 (2010). Doi: https://doi.org/10.1088/1755-1315/12/1/012036