• 제목/요약/키워드: Surface treatments

검색결과 1,426건 처리시간 0.026초

Implant surface treatments affect gene expression of Runx2, osteogenic key marker

  • Na, Young;Heo, Seong-Joo;Kim, Seong-Kyun;Koak, Jai-Young
    • The Journal of Advanced Prosthodontics
    • /
    • 제1권2호
    • /
    • pp.91-96
    • /
    • 2009
  • STATEMENT OF PROBLEM. The aim of this study was to study the effects of various surface treatments to a titanium surface on the expression of Runx2 in vitro. MATERIAL AND METHODS. Human Osteosarcoma TE-85 cells were cultured on machined, sandblasted, or anodic oxidized cpTi discs. At various times of incubation, the cells were collected and then processed for the analysis of mRNA expression of Runx2 using reverse transcription-PCR. RESULTS. The expression pattern of Runx2 mRNA was differed according to the types of surface treatment. When the cells were cultured on the untreated control culture plates, the gene expression of Runx2 was not increased during the experiments. In the case of that the cells were cultured on the machined cpTI discs, the expression level was intermediate at the first day, but increased constitutively to day 5. In cells on sandblasted cpTi discs, the expression level was highest in the first day sample and the level was maintained to 5 days. In cells on anodized cpTi discs, the expression level increased rapidly to 3 days, but decreased slightly in the 5-th day sample. CONCLUSION. Different surface treatments may contribute to the regulation of osteoblast function by influencing the level of gene expression of key osteogenic factors.

Effects of post surface conditioning before silanization on bond strength between fiber post and resin cement

  • Mosharraf, Ramin;Ranjbarian, Parisa
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권2호
    • /
    • pp.126-132
    • /
    • 2013
  • PURPOSE. Post surface conditioning is necessary to expose the glass fibers to enable bonding between fiber post and resin cement. The purpose of the present study was to evaluate the effect of different surface conditioning on tensile bond strength (TBS) of a glass fiber reinforced post to resin cement. MATERIALS AND METHODS. In this in vitro study, 40 extracted single canal central incisors were endodontically treated and post spaces were prepared. The teeth were divided into four groups according to the methods of post surface treatment (n=10): 1) Silanization after etching with 20% $H_2O_2$, 2) Silanization after airborne-particle abrasion, 3) Silanization, and 4) No conditioning (Control). Adhesive resin cement (Panavia F 2.0) was used for cementation of the fiber posts to the root canal dentin. Three slices of 3 mm thick were obtained from each root. A universal testing machine was used with a cross-head speed of 1 mm/minute for performing the push-out tests. Two-way ANOVA and Tukey post hoc tests were used for analyzing data (${\alpha}$=0.05). RESULTS. It is revealed that different surface treatments and root dentin regions had significant effects on TBS, but the interaction between surface treatments and root canal regions had no significant effect on TBS. There was significant difference among $H_2O_2$ + Silane Group and other three groups. CONCLUSION. There were significant differences among the mean TBS values of different surface treatments. Application of hydrogen peroxide before silanization increased the bond strength between resin cements and fiber posts. The mean TBS mean values was significantly greater in the coronal region of root canal than the middle and apical thirds.

Effect of surface treatments on the bond strength of indirect resin composite to resin matrix ceramics

  • Celik, Ersan;Sahin, Sezgi Cinel;Dede, Dogu Omur
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권4호
    • /
    • pp.223-231
    • /
    • 2019
  • PURPOSE. The purpose of this study was to evaluate the shear bond strength (SBS) of an indirect resin composite (IRC) to the various resin matrix ceramic (RMC) blocks using different surface treatments. MATERIALS AND METHODS. Ninety-nine cubic RMC specimens consisting of a resin nanoceramic (RNC), a polymer-infiltrated hybrid ceramic (PIHC), and a flexible hybrid ceramic (FHC) were divided randomly into three surface treatment subgroups (n = 11). In the experimental groups, untreated (Cnt), tribochemical silica coating (Tbc), and Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) laser irradiation (Lsr) with 3 W (150 mJ/pulse, 20 Hz for 20 sec.) were used as surface treatments. An indirect composite resin (IRC) was layered with a disc-shape mold ($2{\times}3mm$) onto the treated-ceramic surfaces and the specimens submitted to thermal cycling (6000 cycles, $5-55^{\circ}C$). The SBS test of specimens was performed using a universal testing machine and the specimens were examined with a scanning electron microscope to determine the failure mode. Data were statistically analyzed with two-way analysis of variance (ANOVA) and Tukey HSD test (${\alpha}=.05$). RESULTS. According to the two-way ANOVA, only the surface treatment parameter was statistically significant (P<.05) on the SBS of IRC to RMC. The SBS values of Lsr-applied RMC groups were significantly higher than Cnt groups for each RMC material, (P<.05). Significant differences were also determined between Tbc surface treatment applied and untreated (Cnt) PIHC materials (P=.039). CONCLUSION. For promoting a reliable bond strength during characterization of RMC with IRC, Nd:YAG laser or Tbc surface treatment technique should be used, putting in consideration the microstructure and composition of RMC materials and appropriate parameters for each material.

열처리를 통한 3가 크롬도금층의 마모 및 부식특성 개선 (Improvement of the Wear Resistance and Anti-Corrosion of the Trivalent Cr Platings Using Heat Treatments)

  • 남기석;박율민;나종주;권식철
    • 열처리공학회지
    • /
    • 제16권6호
    • /
    • pp.335-340
    • /
    • 2003
  • To improve properties of wear resistance and anti-corrosion of the trivalent chromium platings, oxinitrocarbunsing and steam oxidation were conducted. Armophous trivalent Cr platings could be transformed to chromium carbides of high hardness, that showed low friction and wear rate. Even though micro-cracks were within as platings, superior anti-corrosion property was obtained by these treatments due to healing of cracks at the interface between the trivalent chromium platings and substrate.

실란 프라이머를 이용한 PDMS-PMMA 접착 (A study on PDMS-PMMA Bonding using Silane Primer)

  • 김강일;박신욱;양상식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1480-1481
    • /
    • 2008
  • In this paper, we present surface treatments for achieving bonds between PMMA and PDMS substrates. Silane primer is used for the formation of hydroxyl group on PMMA surfaces. The formed hydroxyl groups enhance the bonding strength of PDMS-PMMA substrates without channel clogging and structure deformation. The bonding strength on the different surface treatments (include oxygen plasma, 3-APTES, and corona discharge) is evaluated to find optimal bonding condition. The maximum bonding strength at the optimal surface treatment is over 300 kPa. The surface treatment using silane primer can be used to the bonding process of Micro-TAS and Lab-on-a-Chip.

  • PDF

Helium/Oxygen Atmospheric Pressure Plasma Treatment on Poly(ethylene terephthalate) and Poly(trimethylene terephthalate) Knitted Fabrics: Comparison of Low-stress Mechanical/Surface Chemical Properties

  • Hwang Yoon Joong;McCord Marian G.;Kang Bok Choon
    • Fibers and Polymers
    • /
    • 제6권2호
    • /
    • pp.113-120
    • /
    • 2005
  • Helium-oxygen plasma treatments were conducted to modify poly(trimethylene terephthalate) (PIT) and poly(ethylene terephthalate) (PET) warp knitted fabrics under atmospheric pressure. Lubricant and contamination removals by plasma etching effect were examined by weight loss $(\%)$ measurements and scanning electron microscopy (SEM) analysis. Surface oxidation by plasma treatments was revealed by x-ray photoelectron spectroscopy (XPS) analyses, resulting in formation of hydrophilic groups and moisture regain $(\%)$ enhancement. Low-stress mechanical properties (evaluated by Kawabata evaluation system) and bulk properties (air permeability and bust strength) were enhanced by plasma treatment. Increasing interfiber and interyarn frictions might play important roles in enhancing surface property changes by plasma etching effect, and then changing low-stress mechanical properties and bulk properties for both fabrics.

A review: role of interfacial adhesion between carbon blacks and elastomeric materials

  • Kang, Min-Joo;Heo, Young-Jung;Jin, Fan-Long;Park, Soo-Jin
    • Carbon letters
    • /
    • 제18권
    • /
    • pp.1-10
    • /
    • 2016
  • Carbon blacks (CBs) have been widely used as reinforcing materials in advanced rubber composites. The mechanical properties of CB-reinforced rubber composites are mostly controlled by the extent of interfacial adhesion between the CBs and the rubber. Surface treatments are generally performed on CBs to introduce chemical functional groups on its surface. In this study, we review the effects of various surface treatment methods for CBs. In addition, the preparation and properties of CB-reinforced rubber composites are discussed.

건식 열화처리가 FRP의 표면 열화와 유전특성에 미치는 영향 (The Influence of Dry Treatments on the Surface Degradation and Dielectric Properties in Fiber Reinforced Plastics)

  • 이백수;이덕출;정의남;유도현;김종택
    • 한국안전학회지
    • /
    • 제13권3호
    • /
    • pp.88-95
    • /
    • 1998
  • In this paper, we investigated the change of wettability, surface potential decay and dielectric properties caused by ultraviolet-treated, thermal-treated and discharge-treated FRP(fiber reinforced plastics) respectively for finding out the influence of dry treatments effected to electrical characteristics on the surface of polymer composites. For the change of wettability, the contact angle of thermal-treated specimen with the high temperature of $200^{\circ}C$ increased. But that of UV-treated and discharge- treated specimen decreased. The characteristic of surface potential decay shows the tendency of the remarkable decrease on UV-treated and discharge-treated specimens, but no difference on thermal-treated specimen compared with untreated one. Also, for the dielectric properties, it shows the increase at large on the treated specimens and especially, the remarkable increase on thermal-treated one.

  • PDF

Effect of repair methods and materials on the flexural strength of 3D-printed denture base resin

  • Viotto, Hamile Emanuella do Carmo;Silva, Marcela Dantas Dias;Nunes, Thais Soares Bezerra Santos;Coelho, Sabrina Romao Goncalves;Pero, Ana Carolina
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권5호
    • /
    • pp.305-314
    • /
    • 2022
  • PURPOSE. The aim of this study was to evaluate the flexural strength of a 3D-printed denture base resin (Cosmos Denture), after different immediate repair techniques with surface treatments and thermocycling. MATERIALS AND METHODS. Rectangular 3D-printed denture base resin (Cosmos Denture) specimens (N = 130) were thermocycled (5,000 cycles, 5℃ and 55℃) before and after the different repair techniques (n = 10 per group) using an autopolymerized acrylic resin (Jet, J) or a hard relining resin (Soft Confort, SC), and different surface treatments: Jet resin monomer for 180 s (MMA), blasting with aluminum oxide (JAT) or erbium: yttrium-aluminum-garnet laser (L). The control group were intact specimens. A three-point flexural strength test was performed, and data (MPa) were analyzed by ANOVA and Games-Howell post hoc test (α = 0.05). Each failure was observed and classified through stereomicroscope images and the surface treatments were viewed by scanning electron microscope (SEM). RESULTS. Control group showed the highest mean of flexural strength, statistically different from the other groups (P < .001), followed by MMA+J group. The groups with L treatment were statistically similar to the MMA groups (P > .05). The JAT+J group was better than the SC and JAT+SC groups (P < .05), but similar to the other groups (P > .05). Adhesive failures were most observed in JAT groups, especially when repaired with SC. The SEM images showed surface changes for all treatments, except JAT alone. CONCLUSION. Denture bases fabricated with 3D-printed resin should be preferably repaired with MMA+J. SC and JAT+SC showed the worst results. Blasting impaired the adhesion of the SC resin.

도재의 표면처리에 따른 레진시멘트와의 전단결합강도 및 표면상태에 관한 연구 (A STUDY OF SHEAR BOND STRENGTH AND SURFACE CONDITION BETWEEN SURFACE TREATED PORCELAIN AND RESIN CEMENT)

  • 박상혁;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제22권1호
    • /
    • pp.144-155
    • /
    • 1997
  • This study evaluated shear bond strength between porcelain and resin cement according to various surface treatments of porcelain, and surface condition of debonded porcelain. 50 porcelain specimens(Celay block A2M7) and composite resin specimens(Clearfil Photo-Bright) were prepared, and divided into 5 experimental groups according to the treatment method of porcelain surface. 5 experimental groups by surface treatments were as follows; CONTROL Group : No surface treatment was done on the surface of porcelains. SAND Group : The surface of porcelains were sandblasted with $50{\mu}m$ aluminum oxide for 5 seconds. HF Group: The surface of porcelains were etched with 8% Hydrofluoric acid for 4 minutes. SIL Group: The surface of porcelains were coated with silane coupling agent and heated at $100^{\circ}C$ for 5 minutes. SAND+HF+SIL Group : The surface of porcelains were sandblasted with $50{\mu}m$ aluminum oxide for 5 seconds and etched with 8% Hydrofluoric acid for 4 minutes, and coated with silane coupling agent and heated at $100^{\circ}C$ for 5 minutes. After surface treatments on the prepared porcelain surface two pastes of Panavia 21$^{(R)}$ were mixed, they were applied between composite resin block and porcelain surface, and then excessive resin cements were removed, and its margin was surrounded with Oxyguard II. All specimens were stored for 24 hours in water at $37^{\circ}C$ and tested with Instron testing machine between porcelains and resin cements, and debonded porcelain surfaces were observed under Scanning Electon Microscope(Hitachi S-2300) at 20kvp. The values from each group were compared statistically by Student's t-test. The obtained results were as follows; 1. The shear bond strength without surface treatment of porcelain was the lowest among all experimental groups(p<0.05). 2. The detached porcelain surface with sandblasting alone had more remarkable cracks than with only Hydrofluoric Acid or Silane coupling 2gent, but showed the lowest value of shear bond strength among surface treated groups(p<0.05), 3. When porcelain surface was treated by hydrofluoric acid, it affected shear bond strength more than silane coupling agent, but there were no significant statistical differences(p>0.05). 4. When three methods were combined to increase shear bond strength between porcelains and resin cements, its value was the highest than the others(p<0.05). 5. In Scannig Electron Micrograph of detached porcelain surface with no treatment, the sample revealed adhesive failure between the porcelain and resin cement whereas detached porcelain surface with combination of three method cohesive failure on the porcelain.

  • PDF