• 제목/요약/키워드: Surface treatment.

검색결과 8,508건 처리시간 0.041초

Study on Efficiency improvement of OLEDs by surface treatment of $UV/O_3$ ($UV/O_3$ 표면처리에 따른 OLEDs 효율 향상에 관한 연구)

  • Jang, Yoon-Ki;Kim, Byoung-Sang;Kwon, Oh-Kwan;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.142-144
    • /
    • 2005
  • Main purpose of this study is a improved efficiency of Organic light emitting diodes(OLEDs) concerning $UV/O_3$ treatment. We investigated the efficiency of OLEDs by $UV/O_3$ treatment of ITO surface. We measured current density-voltage, luminance-voltage characteristics in different $UV/O_3$ treatment time and observed ITO surface roughness by using AFM(Atomic Force Microscope). The fundamental structure of the OLEDs was $ITO/NPB/Alq_3/LiF/Al$. We performed $UV/O_3$ treatment and found that $UV/O_3$ treatment enhanced the performance of OLEDs. We also found that change of surface roughness according to difference time a $UV/O_3$ treatment

  • PDF

Comparison between Acid and Heat Treatment for Capacity Enhancement of RuO2/MWNT Composite Electrode Materials for Ultracapacitor (울트라캐패시터용 RuO2/MWNT 복합 전극재료의 용량개선을 위한 산처리 및 열처리 효과 비교)

  • Kim, Yong-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제23권1호
    • /
    • pp.65-69
    • /
    • 2010
  • In this study, we compared two methods(an acid treatment in strong acid reflux and a heat treatment in air atmosphere) for hydrophilic surface treatment of multi-walled carbon nanotubes(MWNT) to enhance the capcity of $RuO_2$/MWNT composite electrode materials for ultracapacitor. Both treatments generated a number of defects on the surface of MWNT by the breakage of $\pi$ bond in graphene layer at which carboxyl groups were introduced. However, the degree of hydrophilicity generated by strong acid treatment was higher than that by heat treatment in air, which was revealed by the quantitative measurement of surface carboxyl groups by using Boehm titration. The increased hydrophilicity save rise to an improved dispersity of $RuO_2$ nanoparticles on MWNT. Finally, the improved dispersity resulted in the capacity enhancement of composite electrode materials for ultracapacitor.

Surface Modification of Polymethyl methacrylate(PMMA) by Laser Surface Treatment for Microfluidic Chip (유체소자 성능향상을 위한 Polymethyl methacrylate(PMMA)의 레이저 표면처리)

  • Shin, Sung-Kwon;Lee, Sang-Don;Lee, Cheon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제56권2호
    • /
    • pp.334-337
    • /
    • 2007
  • After the advent of micro-Total Analysis Systems(${\mu}-TAS$) based on silicon various polymer for microfluidic chip has been studied. Polymer materials for microfluidic compared with silicon and glass which were traditional materials of a microfluidic chip, have the advantages of economical efficiency simple manufacturing process and wide materials selectivity corresponding to fluids. Surface energy of polymers we, however lower than silicon or glass. To overcome this problem, various surface modification methods have been investigated. The surface modification using laser has the advantage of the simple experiment that only directly irradiated laser beam on the material surface in the air. This work discuss the surface modification of polymethly methacrylate(PMMA) by 4th harmonic Nd:YAG laser (${\lambda}266nm$, pulse) treatment. After the laser treatment, the PMMA surface was investigated using a contact angle measuring instrument. The contact angle was decreased with a increase of the surface oxygen content. This result means the surface energy of PMMA was increased by the laser treatment without changing of its bulk characteristics.

Effects of Atmospheric Pressure Microwave Plasma on Surface of SUS304 Stainless Steel

  • Shin, H.K.;Kwon, H.C.;Kang, S.K.;Kim, H.Y.;Lee, J.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.268-268
    • /
    • 2012
  • Atmospheric pressure microwave induced plasmas are used to excite and ionize chemical species for elemental analysis, for plasma reforming, and for plasma surface treatment. Microwave plasma differs significantly from other plasmas and has several interesting properties. For example, the electron density is higher in microwave plasma than in radio-frequency (RF) or direct current (DC) plasma. Several types of radical species with high density are generated under high electron density, so the reactivity of microwave plasma is expected to be very high [1]. Therefore, useful applications of atmospheric pressure microwave plasmas are expected. The surface characteristics of SUS304 stainless steel are investigated before and after surface modification by microwave plasma under atmospheric pressure conditions. The plasma device was operated by power sources with microwave frequency. We used a device based on a coaxial transmission line resonator (CTLR). The atmospheric pressure plasma jet (APPJ) in the case of microwave frequency (880 MHz) used Ar as plasma gas [2]. Typical microwave Pw was 3-10 W. To determine the optimal processing conditions, the surface treatment experiments were performed using various values of Pw (3-10 W), treatment time (5-120 s), and ratios of mixture gas (hydrogen peroxide). Torch-to-sample distance was fixed at the plasma edge point. Plasma treatment of a stainless steel plate significantly affected the wettability, contact angle (CA), and free energy (mJ/$m^2$) of the SUS304 surface. CA and ${\gamma}$ were analyzed. The optimal surface modification parameters to modify were a power of 10 W, a treatment time of 45 s, and a hydrogen peroxide content of 0.6 wt% [3]. Under these processing conditions, a CA of just $9.8^{\circ}$ was obtained. As CA decreased, wettability increased; i.e. the surface changed from hydrophobic to hydrophilic. From these results, 10 W power and 45 s treatment time are the best values to minimize CA and maximize ${\gamma}$.

  • PDF

Surface Treatment in Edge Position of Spheroidal Cast Iron for Mold Materials by Using High Power Diode Laser (High Power Diode Laser을 이용한 금형재료용 구상화 주철의 모서리부 표면처리)

  • Hwang, Hyun-Tae;Song, Hyeon-Soo;Kim, Jung-Do;Song, Moo-Keun;Kim, Young-Kuk
    • Korean Journal of Materials Research
    • /
    • 제19권9호
    • /
    • pp.457-461
    • /
    • 2009
  • Recently, metal molding has become essential not only for automobile parts, but also mass production, and has greatly influenced production costs as well as the quality of products. Its surface has been treated by carburizing, nitriding and induction hardening, but these existing treatments cause considerable deformation and increase the expense of postprocessing after treatment; furthermore, these treatments cannot be easily applied to parts that requiring the hardening of only a certain section. This is because the treatment cannot heat the material homogeneously, nor can it heat all of it. Laser surface treatment was developed to overcome these disadvantages, and, when the laser beam is irradiated on the surface and laser speed is appropriate, the laser focal position is rapidly heated and the thermal energy of surface penetrates the material after irradiation, finally imbuing it with a new mechanical characteristic by the process of self-quenching. This research estimates the material characteristic after efficient and functional surface treatment using HPDL, which is more efficient than the existing CW Nd:YAG laser heat source. To estimate this, microstructural changes and hardness characteristics of three parts (the surface treatment part, heat affect zone, and parental material) are observed with the change of laser beam speed and surface temperature. Moreover, the depth of the hardened area is observed with the change of the laser beam speed and temperature.

A Study on the Plasma Treatment Effect of Metal Fibersusing Micromechanical Technique (미세역학적 실험법에 의한 금속섬유의 플라즈마 처리효과에 관한 연구)

  • MiYeon Kwon;Seung Goo Lee
    • Journal of Adhesion and Interface
    • /
    • 제23권4호
    • /
    • pp.122-129
    • /
    • 2022
  • In this study, the hydrophilicity of the metal fiber is improved by introducing an oxygen-containing functional group to the fiber surface after treatment of the metal fiber using the oxygen plasma treatment time as an experimental variable. For the surface modification of metal fibers, changes in surface properties before and after plasma treatment were observed using SEM and x-ray photoelectron spectroscopy (XPS). In order to observe the effect of the plasma treatment time on the surface of the metal fiber, the change in contact angle of the metal fiber with respect to a polar solvent and a non-polar solvent was measured. After calculating the change in surface free energy using the measured contact angle, the contact angle and the surface free energy for metal fibers before and after oxygen plasma treatment were compared, and the correlation with the adhesion work was also considered. The microdroplet specimens were prepared to investigate the effect of surface changes of these metal fibers on the improvement of shear strength at the interface when combined with other materials and the interfacial shear strength was measured, and the correlation with the adhesion work was also identified. Therefore, the oxygen plasma treatment of the metal fiber results in an increase in the physical surface area on the fiber surface and a change in contact angle and surface energy according to the introduction of the oxygen-containing functional group on the surface. This surface hydrophilization resulted in improving the interfacial shear strength with the polymer resin.

Electrochemical Properties of Dye-sensitized Solar Cells with Improving the Surface Structure (표면형상 변화에 따른 염료감응 태양전지의 전기화학적 특성)

  • Zhao, Xing Guan;Jin, En Mei;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제25권2호
    • /
    • pp.153-158
    • /
    • 2012
  • We use UV(ultraviolet)-$O_3$ treatment to increase the surface area and porosity of $TiO_2$ films in dye-sensitized solar cells (DSSCs). After the UV-$O_3$ treatment, surface area and porosity of the $TiO_2$ films were increased, the increased porosity lead to amount of dye loading and solar conversion efficiency was improved. Field emission scanning electron microscopy images clearly showed that the nanocrystalline porosity of films were increased by UV-$O_3$ treatment. The Brunauer, Emmett, and Teller surface area of the $TiO_2$ films were increased from $0.71cm^2/g$ to $1.31cm^2/g$ by using UV-$O_3$ treatment for 20 min. Also, UV-$O_3$ treatment of $TiO_2$ films significantly enhanced their solar conversion efficiency. The efficiency of the films without treatment was 4.9%, and was increased to 5.6% by UV-$O_3$ treatment for 20 min. Therefore the process enhanced the solar conversion efficiency of DSSCs, and can be used to develop high sensitivity DSSCs.

Surface Characteristics based on Material and Process Changes in Surface Treatment using Fast Tool Servo (FTS를 이용한 나노표면개질공정의 공정변화와 소재에 따른 표면특성)

  • Kim, Mi Ru;Lee, Deug Woo;Lee, Seung Jun;Liang, Li;Kim, Jong Man;Jang, Nam-Su
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • 제24권6호
    • /
    • pp.639-646
    • /
    • 2015
  • A treatment for improving the characteristics of a surface is very important in increasing the life of machine parts. Many studies have been carried out on the surface characteristics after such treatments. For enhanced eco-technology, an alternative to a conventional chemical surface treatment process is essential. Ultrasonic nano-crystal surface modification (UNSM) technology is a physical environmentally friendly surface treatment method. This technology was developed in domestic and currently being used. As the mechanism of UNSM technology, a ball tip attached to an ultrasonic vibration device strikes the metal surface at nearly 20,000 times per second. The resulting modified surface layer improves the surface characteristics. This paper describes a self-developed fast tool servo system applied to the UNSM process as a vibration module within a high-frequency bandwidth. After describing the surface modification process based on the material and process changes, the surface characteristics are compared.

A Surface Treatment Technique for Interim Crown Fabricated by Three-Dimensional Printing with Digital Light-Processing Technology

  • Son, Keunbada;Lee, Jaesik;Lee, Kyu-Bok
    • Journal of Korean Dental Science
    • /
    • 제14권2호
    • /
    • pp.79-89
    • /
    • 2021
  • Purpose: The technique introduced in this study describes a technique for surface treatment that applies a photocuring resin to the surface of an interim crown fabricated by three-dimensional (3D) printing without a conventional polishing method. The purpose of this study was to evaluate marginal and internal fit and the intaglio surface trueness of interim crowns after surface treatment of 3D-printed crowns for clinical application. Materials and Methods: An interim crown was fabricated using a 3D printer with digital light-processing technology, and the surface support was removed. After the posttreatment process, the resin was thinly applied to the surface of the interim crown and polymerized to solve the esthetic problem of the surface without the conventional polishing process. In addition, the marginal and internal fits were measured to verify the clinical use of this technique, and the trueness was evaluated to confirm the deformation of the inner surface according to the technical application of the outer surface of the interim crown. The difference before and after the evaluation by a statistical method was verified using an independent t-test (α=0.05). Result: There was no significant difference in the marginal and internal fit before and after the application of this technique (P>0.05). There was no significant difference in intaglio surface trueness before and after the application of this technique (P=0.963). Conclusion: There was no change in the marginal and internal fit or in intaglio surface trueness of the interim crowns to which this technology was applied. This surface treatment technique is a more convenient method for interim crowns fabricated using 3D-printing technology without the conventional polishing process.

Influence of Tool Coating on Frictional Behavior of AZ31B Mg Alloy at Elevated Temperature (금형 표면 처리가 AZ31B 마그네슘 합금의 온간 마찰 특성에 미치는 영향에 관한 연구)

  • Han, S.S.
    • Transactions of Materials Processing
    • /
    • 제30권1호
    • /
    • pp.43-48
    • /
    • 2021
  • The success of warm forming of Mg alloy sheet is greatly influenced by friction at elevated temperature, depending on the surface treatment of the tool. The tool coating affected the frictional characteristics of AZ31B Mg alloy sheet at elevated and room temperatures. The frictional behavior of the Mg alloy sheet at room temperature was not significantly affected by surface treatment conditions of the tool, but was significantly affected at elevated temperature. When the contact pressure is high, a few surface-treated tools exhibit a higher coefficient of friction than those without surface treatment. It is important to select the surface treatment conditions of the tool in order to ensure appropriate friction during warm forming of Mg alloy sheet.