DOI QR코드

DOI QR Code

Electrochemical Properties of Dye-sensitized Solar Cells with Improving the Surface Structure

표면형상 변화에 따른 염료감응 태양전지의 전기화학적 특성

  • Zhao, Xing Guan (Department of Electrical Engineering, Chonnam National University) ;
  • Jin, En Mei (Department of Electrical Engineering, Chonnam National University) ;
  • Gu, Hal-Bon (Department of Electrical Engineering, Chonnam National University)
  • ;
  • ;
  • 구할본 (전남대학교 전기공학과)
  • Received : 2012.01.04
  • Accepted : 2012.01.19
  • Published : 2012.02.01

Abstract

We use UV(ultraviolet)-$O_3$ treatment to increase the surface area and porosity of $TiO_2$ films in dye-sensitized solar cells (DSSCs). After the UV-$O_3$ treatment, surface area and porosity of the $TiO_2$ films were increased, the increased porosity lead to amount of dye loading and solar conversion efficiency was improved. Field emission scanning electron microscopy images clearly showed that the nanocrystalline porosity of films were increased by UV-$O_3$ treatment. The Brunauer, Emmett, and Teller surface area of the $TiO_2$ films were increased from $0.71cm^2/g$ to $1.31cm^2/g$ by using UV-$O_3$ treatment for 20 min. Also, UV-$O_3$ treatment of $TiO_2$ films significantly enhanced their solar conversion efficiency. The efficiency of the films without treatment was 4.9%, and was increased to 5.6% by UV-$O_3$ treatment for 20 min. Therefore the process enhanced the solar conversion efficiency of DSSCs, and can be used to develop high sensitivity DSSCs.

Keywords

References

  1. B. O'Regan and M. Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. G. Rothenberger, J. Moser, M. Gratzel, N. Serpone, and D. K. Sharma, J. Am. Chem. Soc., 107, 8054 (1985). https://doi.org/10.1021/ja00312a043
  3. E. M. Jin, K. Park, J. Yun, C. K. Hong, M. Hwang, B. Park, K. Kim, and H. B. Gu, Surf. Rev. Lett., 17, 15 (2010). https://doi.org/10.1142/S0218625X10013576
  4. N. G. Park, Polymer Science and Technology, 14, 407 (2003).
  5. M. Gratzel, J. Photoch. Photobio. A Chemistry, 164, 7 (2004).
  6. K. H. Park and M. Dhayal, Electrochem. Commun., 11, 75 (2009). https://doi.org/10.1016/j.elecom.2008.10.020
  7. K. H. Park, E. M. Jin, H. B. Gu, S. E. Shim, C. K. Hong, Mat. Lett., 63, 2208 (2009). https://doi.org/10.1016/j.matlet.2009.07.034
  8. A. Hagfeldt, U. Bjorksten, and M. Gratzel, Phys. Chem, 100, 8045 (1996). https://doi.org/10.1021/jp9518567
  9. B. K. Lee and J. J. Kim, Current Appl. Phys., 9, 404 (2009). https://doi.org/10.1016/j.cap.2008.03.017
  10. A. Zaban, A. Meier, and B. A. Gregg, J. Phys. Chem., B107, 3019 (2003).
  11. V. Dhas, S. Muduli, S. Agarkar, A. Rana, B. Hannoyer, R. Banerjee, and S. Ogale, Sol. Energy, 85, 1213 (2011). https://doi.org/10.1016/j.solener.2011.02.029