• Title/Summary/Keyword: Surface smoothness

Search Result 172, Processing Time 0.027 seconds

The Effect of Heat Sterilization on the Surface Topography and the Tensile Properties in Various Nickel Titanium Wires Including a Korean Product (열멸균과정이 nickel titanium호선의 기계적 성질과 표면상태에 미치는 영향)

  • Kim, Byoung-Ho;Nahm, Dong-Seok;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.28 no.6 s.71
    • /
    • pp.927-935
    • /
    • 1998
  • The purpose of this study is to investigate the changes of mechanical properties and surface topography of various nickel titanium wires after heat sterilization for recycling with quantitative method. The materials used were four kinds of nickel titanium orthodontic wires including a Korean product. Experimental specimens were treated with two kinds of heat sterilization methods ; dry heat ($180^{\circ}C$, 60min) and autoclave ($121^{\circ}C$, 15-20psi, 30min). Mechanical properties were evaluated by tensile test with Instron 4466 (load cell capacity:.1000 kg, cross head speed:5mm/min, grip distince:40mm in room temperature). Surface topography of various wires was compared with each other qualitatively by using scanning electron microscopy and quantitatively by using profilometer. The findings were analyzed statistically with student t-tests. The results were as follows; 1. Neither method of heat sterilization had any effects on tensile properties of the nickel-titanium wires used in this experiment. 2. Before heat sterilization, the surface smoothness was highest in Optimalloy, followed by Align and Sentalloy, with NiTi showing the lowest smoothness value. 3. In surface topography, Align and Optimalloy were not influenced by heat sterilization. NiTi, on the other hand, had increased roughness after dry heat sterilization and Sentalloy showed the same tendency after each of the two heat sterilization procedures.

  • PDF

Machining Characteristics according to Electrochemical Polishing (ECP) Conditions of Stainless Steel Mesh (스테인리스 망의 전기화학 폴리싱(ECP) 조건에 따른 가공 특성)

  • Kim, Uk Su;Park, Jeong Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.41-48
    • /
    • 2015
  • Stainless steel mesh has been used as a filter in various fields, including domestic, medical, etc. However, the surface before machining may have an adverse effect the product quality and performance because it is not smooth. Especially, adsorbed impurities in the surface result in difficulty in cleaning. Therefore, in this paper, we propose an improved surface quality through electrochemical polishing (ECP). Two electrodes, composed of STS304 (anode) and copper (cathode) underwent machining with two conditions according to polishing time and current density. As the polishing time and current density increase, the surface of curvature decreases, and roughness and material removal rate (MRR) improves. The machined surface roughness and image were obtained through the atomic force microscope (AFM) and stereoscopic microscope. The study also analyzed hydrophilic effect through contact angles. This obtains corrosion resistance, smoothness, hydrophilic property, etc.

Deformable Surface 3D Reconstruction from a Single Image by Linear Programming

  • Ma, Wenjuan;Sun, Shusen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3121-3142
    • /
    • 2017
  • We present a method for 3D shape reconstruction of inextensible deformable surfaces from a single image. The key of our approach is to represent the surface as a 3D triangulated mesh and formulate the reconstruction problem as a sequence of Linear Programming (LP) problems. The LP problem consists of data constraints which are 3D-to-2D keypoint correspondences and shape constraints which are designed to retain original lengths of mesh edges. We use a closed-form method to generate an initial structure, then refine this structure by solving the LP problem iteratively. Compared with previous methods, ours neither involves smoothness constraints nor temporal consistency, which enables us to recover shapes of surfaces with various deformations from a single image. The robustness and accuracy of our approach are evaluated quantitatively on synthetic data and qualitatively on real data.

CFD Prediction of Cavity Drag at Transonic and Low Supersonic Speeds

  • 김희동;구병수;우선훈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.18-18
    • /
    • 2000
  • In the high lift devices specifications for surface smoothness requirements, as manufacturing tolerances, arise out of aerodynamic consideration to minimize drag. True optimization of tolerances is a multi-disciplinary problem involving fluid mechanics, device performance, manufacturing philosophy and life cycle costing. One of the reasons for degradation of wetted surface is discrete roughness as a consequence of manufacturing defects, collectively termed as one of the excrescences effect. Usually, excrescence drag arising out of discrete roughness is of considerable lower order of magnitude as compared to the total drag of the flight bodies. Nor was there adequate predicting tool to account for the extent of drag degradation. Estimation of excrescence drag remained as a state-of-the art based on experimental results.

  • PDF

Effects of Montmorillonite Clay on Properties of paper Coating Additives

  • Seo Yoon-Seok;Nah Chang-Woon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.1 s.113
    • /
    • pp.34-44
    • /
    • 2006
  • A new composition of paper coating adhesives was prepared by using a nano-filler of an organically-modified montmorillonite (O-MMT). The new O-MMT coating adhesives were applied to the paper, and the properties of coated papers including surface morphology, optical and physical properties, and printing properties were investigated. The use of O-MMT improved the mechanical properties, such as folding endurance, tearing strength, and tensile strength, while the surface smoothness decreased. It decreased especially when the dosage was high enough, approximately above 6 parts. The printing properties such as wet- and dry-pick were enhanced with addition of O-MMT.

Assesment of Human Skin Surface and Measurement of Temperature upon Applying Pump Type Cosmetics (펌프 타입 화장품 도포에 따른 피부 표면 평가와 온도 측정)

  • Cho, Wan-Goo;Park, Jee-Eun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.144-151
    • /
    • 2010
  • Over the years, scientists have developed many test methods to evaluate the efficacy of skin care products. The needs for objective assessment have stimulated to develop instruments that are capable of reliably monitoring some parameters in evaluating skin conditions. The beauty is evaluated as a measure of smoothness of skin surface. Quantitative size measurements of skin pores is also important concept to evaluate the their conditions. The purpose of this paper is to measure the temperature change of skin and the size of pores in the skin. The pore sizes were changed by its varying skin temperature. They were decreased by applying a essence which is contained with propellant and contents.

Effects of the Rapid Thermal Annealing on the Electrical and Structural Properties of Polysilicon Films (급속 열처리 공정에 의한 다결정 실리콘 박막의 전기적, 구조적 특성 연구)

  • 김윤태;유형준;전치훈;장원익;김상호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.9
    • /
    • pp.1060-1067
    • /
    • 1988
  • In this paper, we have investigated the effects of rapid thermal process on the electrical and structural properties of silicon films. It was shown that required times and temperature for the successful activation of dopants (Boron, Phosphorus:5E15atoms/cm\ulcorner were above 1000\ulcorner, 10sec, respectively. The typical resistivities of films deposited below 600\ulcorner were in the range of 1.0 E-3ohm-cm which was 20-30% lower than that of initially polycrystalline silicon depositd above 600\ulcorner. After rapid thermal process at high temperature above 1000\ulcorner, the films did not reveal any change in resistivity due to the dopant segregation, and better electrical conductivity could be obtained by increasing the process time. The grain growth by RTA treatment was more salient in the case of the doped amorphous than that of initially polycrystalline. The surface of the films also preserved the higher structural perfection and surface smoothness.

  • PDF

Optimization of Steamed Bread Making with Addition of Green Tea Powder Using Response Surface Methodology (반응표면분석을 이용한 녹차 첨가 찐빵제조의 최적화)

  • Oh, Yu-Kyung;Kim, Chang-Soon;Chang, Duk-Joon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.3
    • /
    • pp.451-459
    • /
    • 2002
  • High strength flour (12.5% protein) and low strength flour (10.5% protein)were used to determine optimum formulation far steamed bread added with green tea powder (GTP). The response surface study consisted of the following independent variables : GTP (1.5∼4.5%), mixing time (8∼14 min), fermentation time (30∼50min). Bread Quality attributes measured for total bread score of each combination were loaf volume, spread ratio, surface glossiness, smoothness, grain and texture (firmness, cohesiveness, elasticity and adhesiveness). The required amount of GTP, mixing time and fermentation time for steamed bread made from two kinds of flour were different. GTP could be more added to lower strength flour than higher strength flour without losing bread quality. GTP highly affected the loaf volume, spread ratio, surface smoothness, firmness and total bread score of steamed bread (p<0.001). The results suggested that the functional steamed bread added with GTP having excellent quality can be made from low strength flour using green tea powder 3.2%, mixing time 11 min 8 sec and fermentation time 39 min 55 sec.

A Study on the Voxel Coloring using Multi-variable Thresholding (다중 가변 문턱값을 이용한 복셀 칼라링 기법에 관한 연구)

  • Kim Hyo-Sung;Lee Sang-Wook;Nam Ki-Gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.1102-1110
    • /
    • 2005
  • In this paper, we proposed a advanced approach to resolve the trade-off problem for the threshold value determining the photo-consistency in the previous algorithms. The threshold value for the surface voxel is substituted the photo-consistency value of the inside voxel. As iterating the voxel coloring process, the threshold is approached to the optimal value for the individual surface voxel. we present an energy minimization formulation of the binary labeling problem that surface voxels classify into opacity or transparency. The energy formula consists of the data term and the smoothness term. As considering neighboring voxels in the labeling problem, the unevenness of reconstructed surface is reduced. The labeling whose energy is the global minimum can be computed using a graph cut.

Design for the Coated Layer suitable with Conductivity Ink for RFID(II) -Effect of coated weight and calender pressure on coated paper- (RFID용 전도성 잉크에 적합한 도공층 설계 (제2보) -도공량과 캘린더 압력에 따른 도공지의 변화-)

  • Jung, Hae-Sung;Cho, Byoung-Uk;Kim, Chang-Kuen;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.30-34
    • /
    • 2011
  • This study was carried out in order to evaluate the effect of coated weight and calender pressure on conductivity of printed RFID tags. The printed RFID tags have been manufactured with gravure printing and it has been well known that the efficiency of printed RFID tags is influenced by surface properties of substrate. In this study, coated paper was prepared with four different coated weight and three different calender pressure. After printing conductivity ink on coated paper, surface resistance was measured to evaluate the efficiency of the printed RFID tag. It was found that, with increasing of coated weight and calender pressure, the paper gloss, smoothness, brightness and gravure printability were improved while the surface resistance of the printed RFID tag was decreased.