• Title/Summary/Keyword: Surface nucleation

Search Result 334, Processing Time 0.028 seconds

Suppressing Erwinia carotovora Pathogenicity by Projecting N-Acyl Homoserine Lactonase onto the Surface of Pseudomonas putida Cells

  • Li, Qianqian;Ni, Hong;Meng, Shan;He, Yan;Yu, Ziniu;Li, Lin
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1330-1335
    • /
    • 2011
  • N-Acyl homoserine lactones (AHLs) serve as the vital quorum-sensing signals that regulate the virulence of the pathogenic bacterium Erwinia carotovora. In the present study, an approach to efficiently restrain the pathogenicity of E. carotovora-induced soft rot disease is described. Bacillus thuringiensis-derived N-acyl homoserine lactonase (AiiA) was projected onto the surface of Pseudomonas putida cells, and inoculation with both strains was challenged. The previously identified N-terminal moiety of the ice nucleation protein, InaQ-N, was applied as the anchoring motif. A surface display cassette with inaQ-N/aiiA was constructed and expressed under the control of a constitutive promoter in P. putida AB92019. Surface localization of the fusion protein was confirmed by Western blot analysis, flow cytometry, and immunofluorescence microscopy. The antagonistic activity of P. putida MB116 expressing InaQ-N/AiiA toward E. carotovora ATCC25270 was evaluated by challenge inoculation in potato slices at different ratios. The results revealed a remarkable suppressing effect on E. carotovora infection. The active component was further analyzed using different cell fractions, and the cell surface-projected fusion protein was found to correspond to the suppressing effect.

Effect of the Surface Roughness of Electrode on the Charge Injection at the Pentacene/Electrode Interface (전극 표면의 거칠기가 펜터신/전극 경계면의 전류-전압 특성에 주는 영향)

  • Kim, Woo-Young;Jeon, D.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.93-99
    • /
    • 2011
  • We investigated how the surface roughness of electrode affects the charge injection at the pentacene/Au interface. After depositing Au film on the Si substrate by sputtering, we annealed the sample to control the Au surface roughness. Pentacene and Au top electrode were subsequently deposited to complete the sample. The nucleation density of pentacene was slightly higher on the rougher Au electrode, but surface morphologies of thick pentacene films were similar on both the as-prepared and the roughened Au electrodes. The current-voltage curves obtained from the Au/pentacene/Au structure measured as a function of temperature indicated that the interface barrier was higher for the rougher Au bottom-electrode. We propose that the higher barrier was caused by the lower work function of rougher electrode surface and the higher trap density at the interface.

The Effects of Various Alkali Cations on the Crystallization of ZSM-5 at Atmospheric Pressure and Low Temperature (저온상압하에서의 ZSM-5 결정화 반응에 대한 알칼리 양이온의 영향)

  • Kim, Wha Jung;Lee, Myung Churl
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.38-43
    • /
    • 1998
  • It was realized that the nucleation rate in the synthesis of M-ZSM-5 using various alkali cations such as $Li^+$, $Na^+$, $K^+$ and $Cs^+$ at low temperature and atmospheric pressure was decreased in the order of $Na^+>K^+>Li^+>Cs^+$. Unlike conventional synthesis method at high temperature and pressure, the results showed that at low temperature and atmospheric pressure, the higher the nucleation rate is, the larger the crystal size of M-ZSM-5 obtained ; that is, the crystal size in the order of $K^+>Na^+>Cs^+>Li^+$. In addition, it also suggests that regardless of alkali cations to be used, the current synthesis method can produce M-ZSM-5 with BET surface area greater than $300m^2/g$ within 52hrs. of reaction time, in particular greater than $400m^2/g$ within 32hrs, for $Na^+$ cation.

  • PDF

Crystal growing of sodium type 13X zeolite by continuous crystallization method (연속결정화 방법에 의한 13X 제올라이트 결정성장)

  • 김익진;이해진;서동남
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.4
    • /
    • pp.190-195
    • /
    • 2002
  • NaX zeolite crystals of a uniform particle size of 50 $\mu$m were grown by continuous crystallization method from seed crystals (10~20 $\mu$m) added into a 0.5~2.0 g mother liquor having a composition $3.5Na_2O : Al_2O_3: 2.1SiO_2: 1000H_2O$. In order to investigate the crystal growing by continuous method, the mother solution was supplied after 7 days, 5 days, 3 days and 1 day, respectively. The seeding resulted in an increase in the fraction of large crystals compared with unseeded batches and successfully led to an uniform NaX zeolite crystal. It was postulated that the seeding in the synthesis mixture leaded out increase of surface area for physical contact reaction and directed growth of seed crystal without the nucleation in the synthesis gel.

Effect of surface scratching on Barkhausen Noise in 3% Silicon Steel (3% 방향성 규소강판의 표면 선긋기에 의한 Barkhausen Noise에 관한 연구)

  • 박창만;이기암;황도근
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.142-149
    • /
    • 1994
  • The Barkhausen noise was measured as the change of line width(39~1.22 mm) and scratching angle($90^{\circ}~50^{\circ}$) with respect of rolling direction in grain-oriented 3 % Si-Fe of 0.30 and 0.27 mm thickness. The two peak phenomena of the noise envelope observed for non-scratching and scratching of line width 39 mm was explained by large activation energy during $180^{\circ}$ domain wall nucleation and annihilation processes. The amplitudes of the noise envelpoes were decreased as the decrement of scratching line width, but did not almost changed below line width of 9.75 mm. It was explained that the decrease in the envelope with increasing scratching number is associated with lower activation energy of $180^{\circ}$ domain nucleation and annihilation in the vicinity of the scratching area. The noise power was decreased as narrower line width. The dependence of the power on the scratching angle was sharpest decreaded at the 50 angle.

  • PDF

Underlayer for Coercivity Enhancement of Ti/CoCrPt Thin Films (보자력 향상을 위한 Ti/CoCrPt박막의 하지층)

  • Jang, Pyung-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.3
    • /
    • pp.94-98
    • /
    • 2002
  • Sputtering conditions and various underlayer such as Al, Cu, Ni, Cr, Ag, Mg, Fe, Co, Pd, Au, Pt, Mo and Hf were investigated for coercivity enhancement of 20 nm Ti/CoCrPt thin films in order to increase the coercivity of the films thinner than 20 nm. Among them, Ag and Mg were effective to increase the coercivity. Particularly 2 nm Ag was very effective to increase the coercivity and nucleation field as well as to reduce ${\alpha}$ value in CoCrPt thin film such that the coercivity of 2 nm Ag/18 nm Ti/10 nm CoCrPt film was 2200 Oe. However, it seemed that other coercivity enhancement mechanism operated in CoCrPt films because Ti (002) preferred texture was not developed with Ag underlayer contrary to a general expectation. And the coercivity and nucleation field were decreased when glass substrate with rougher surface was used.

Effect of Microstructure of hBN Thin Films on the Nucleation of cBN Phase Deposited by RF UBM Sputtering System (RF UBM Sputtering에 의해 증착된 hBN 박막의 미세구조가 cBN 상의 핵형성에 미치는 영향)

  • Lee Eun-Ok;Park Jong-Keuk;Lim Dae-Soon;Baik Young-Joon
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.4
    • /
    • pp.150-156
    • /
    • 2004
  • Boron nitride thin films were deposited on Si(100) substrate by RF (Radio-frequency) UBM (Unbalanced Magnetron) sputtering system. The effect of working pressure and substrate bias voltage on microstructure and compressive stress of boron nitride thin films has been investigated. In high working pressure, the alignment of hBN laminates increased with substrate bias voltage, in low working pressure, however, it was high in low substrate bias voltage. Compressive stress evolution and surface morphology of deposited BN films are closely related with the alignment of hBN laminates. The cBN phase without high compressive stress could be nucleated on hBN thin film by controlling the alignment of hBN laminates.

Effect of Plasma Pretreatment on Superconformal Cu Alloy Gap-Filling of Nano-scale Trenches

  • Mun, Hak-Gi;Lee, Jeong-Hun;Lee, Su-Jin;Yun, Jae-Hong;Kim, Hyeong-Jun;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.53-53
    • /
    • 2011
  • As the dimension of Cu interconnects has continued to reduce, its resistivity is expected to increase at the nanoscale due to increased surface and grain boundary scattering of electrons. To suppress increase of the resistivity in nanoscale interconnects, alloying Cu with other metal elements such as Al, Mn, and Ag is being considered to increase the mean free path of the drifting electrons. The formation of Al alloy with a slight amount of Cu broadly studied in the past. The study of Cu alloy including a very small Al fraction, by contrast, recently began. The formation of Cu-Al alloy is limited in wet chemical bath and was mainly conducted for fundamental studies by sputtering or evaporation system. However, these deposition methods have a limitation in production environment due to poor step coverage in nanoscale Cu metallization. In this work, gap-filling of Cu-Al alloy was conducted by cyclic MOCVD (metal organic chemical vapor deposition), followed by thermal annealing for alloying, which prevented an unwanted chemical reaction between Cu and Al precursors. To achieve filling the Cu-Al alloy into sub-100nm trench without overhang and void formation, furthermore, hydrogen plasma pretreatment of the trench pattern with Ru barrier layer was conducted in order to suppress of Cu nucleation and growth near the entrance area of the nano-scale trench by minimizing adsorption of metal precursors. As a result, superconformal gap-fill of Cu-Al alloy could be achieved successfully in the high aspect ration nanoscale trenches. Examined morphology, microstructure, chemical composition, and electrical properties of superfilled Cu-Al alloy will be discussed in detail.

  • PDF

Effect of Sulfuric Acid Addition on the Aluminum AC Etching in HCl Solution (염산용액내에 황산 첨가에 의한 알루미늄의 교류에칭 특성)

  • Kim, Hangyoung;Choi, Jinsub;Tak, Yongsug
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.463-468
    • /
    • 1998
  • When sulfuric acid was added in HCl etching solution, corrosion of aluminum metal was inhibited by the chemical adsorption of sulfate ions. In the presence of $SO_4^{-2}$, cyclic voltammetry showed that the protective oxide film was formed on the inner surfaces of etch pits and, pit density was increased by nucleation on both the aluminum surface and the pits inside. Structure and distribution of etch pits found in AC etching of aluminum were strongly influenced by the concentration of $SO_4^{-2}$ and the amount of cathodic pulse charging. Below $0.8mC/cm^2$ of cathodic pulse charging, oxide films formed inside actively dissolving pits indicated the higher resistance to pit nucleation as the concentration of $SO_4^{-2}$ increases. However, the structural change of oxide films occurred above the $0.8mC/cm^2$ charging and the effect of $SO_4^{-2}$ was minimized, and it resulted in the rapid formation of etch pits.

  • PDF

The Properties of GaN Grown by BVPE Method on the Si(111) Substrate with Pre-deposited Al Layer (Al 박막이 증착 된 Si(111) 기판 위에 HVPE 방법으로 성장한 GaN의 특성)

  • Shin Dae Hyun;Baek Shin Young;Lee Chang Min;Yi Sam Nyung;Kang Nam Lyong;Park Seoung Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.201-206
    • /
    • 2005
  • In this work, we tried to improve the fabrication process in HVPE (Hydride Vapor Phase Epitaxy) system by using Si(111) substrate with pre-deposited Al layer. PL measurements was done for samples with and without pre-deposited Al on Si and it was also examined the dependence of the optical characteristic properties on AlN buffer thickness for GaN/AIN/Al/Si. A sample with thin Al nucleation layer on Si substrate reveals a better optical property than the other. And it suggests that the thickness for AlN buffer layer with thin Al nucleation layer on Si(111) substrate is most proper about $260{\AA}$ to grow GaN in HVPE system. The surface morphology of GaN clearly shows the hexagonal crystallization. The XRD pattern showed strong peak at GaN{0001} direction.