• 제목/요약/키워드: Surface microstructure

검색결과 1,846건 처리시간 0.028초

NiO-TiH2 혼합분말의 반응을 이용한 NiTi 합금분말 제조 (Synthesis of NiTi Alloy Powder by the Reaction of NiO-TiH2 Mixing Powders)

  • 전기철;이한얼;임다미;오승탁
    • 한국분말재료학회지
    • /
    • 제22권4호
    • /
    • pp.266-270
    • /
    • 2015
  • The synthesis of NiTi alloy powders by hydrogen reduction and dehydrogenation process of NiO and $TiH_2$ powder mixtures is investigated. Mixtures of NiO and $TiH_2$ powders are prepared by simple mixing for 1 h or ball milling for 24 h. Simple-mixed mixture shows that fine NiO particles are homogeneously coated on the surface of $TiH_2$ powders, whereas ball milled one exhibits the morphology with mixing of fine NiO and $TiH_2$ particles. Thermogravimetric analysis in hydrogen atmosphere reveals that the NiO and $TiH_2$ phase are changed to metallic Ni and Ti in the temperature range of 260 to $290^{\circ}C$ and 553 to $639^{\circ}C$, respectively. In the simple-mixed powders by heat-up to $700^{\circ}C$, agglomerates with solid particles and solidified liquid phase are observed, and the size of agglomerates is increased at $1000^{\circ}C$. From the XRD analysis, the presence of liquid phase is explained by the formation and melting of $NiTi_2$ inter-metallic compound due to an exothermic reaction between Ni and Ti. The simple-mixed powders, heated to $1000^{\circ}C$, lead to the formation of NiTi phase but additional Ni-, Ti-rich and Ti-oxide phases. In contrast, the microstructure of ball-milled powders is characterized by the neck-grown particles, forming $Ni_3Ti$, Ti-oxide and unreacted Ni phase.

서산 비경도 출수 상평통보의 혐기성 부식 특성 (Anaerobic Corrosion Properties of Sangpyeongtongbo Excavated at Bigyeongdo, Seosan)

  • 김규빈;정광용
    • 보존과학회지
    • /
    • 제33권3호
    • /
    • pp.167-179
    • /
    • 2017
  • 서산 비경도 출수 상평통보를 대상으로 혐기성 수중 매장환경에서 형성되는 부식화합물 성분과 이에 따른 혐기성 부식 원인을 추정하였다. 미세조직 관찰, 원소 mapping, 층위별 주성분 분석, 부식화합물 동정을 실시하였다. 그 결과 표면의 고착물은 침상형 육면체형 팔면체형으로 분류되며, 그에 따른 분석 결과 Cu, Pb, S 등의 원소가 검출되었다. 원소 mapping에서는 최외곽에 Cu-S로 이루어진 뚜렷한 층이 확인되었다. 층위별 주성분은 Cu, S, Pb 등이 검출되었고, Zn은 검출되지 않았다. 부식화합물은 $PbCO_3$(고착물), $Cu_{1.96}S$(소지금속)이 나타났다. 따라서 서산 비경도 출수 상평통보의 혐기성 부식 특성은 탈아연, 황화동, 납화합물 세 가지로 요약할 수 있다.

태평양 심해저 망간단괴의 조직 낀 광물학적 연구 (Textural and Mineralogical Investigations on Deep Sea Manganese Nodules from the Equatorial Pacific)

  • 박맹언;김대철
    • 한국수산과학회지
    • /
    • 제20권4호
    • /
    • pp.355-359
    • /
    • 1987
  • (Type A, B 및 C)으로 분류되며, 이들 미끼구조들은 단일 단괴에서도 혼합구조로서 흔히 산출된다. 각 유형은 상이한 화학성분과 구성광물 및 결정도를 나타내며 이 중 A형은 조립질 조직을 갖고있고 다른 유형에 비해 결정도가 높은 Todorokite로 주로 구성되고 Mn의 함량도 놀은 반면에 B와 C형은 중간 내지는 세립질 조직을 갖고 있다$(Mn=30.6\%)$. 또한 A형은 상대적으로 빠른 성장속도를 나타내며, 보트리오이드 사이의 공극에서 Smectite와 규질화석이 나타난다. 이러한 특징은 A형 구조를 갖는 미세한 층(microlayer)의 성인이 해저에서의 열수작용과 관련된 것으로 생각되며, 열수용액은 주변 단열대와 해저확장대로부터 공급된 것으로 추정된다.

  • PDF

DCA-MOD 법으로 YBCO 박막 제조시 하소열처리의 승온속도 효과 (Effect of heating rate on calcination heat treatment of YBCO thin films by DCA-MOD method)

  • 김병주;김혜진;조한우;권연경;유정희;이희균;홍계원
    • Progress in Superconductivity
    • /
    • 제8권2호
    • /
    • pp.186-192
    • /
    • 2007
  • High $J_c\;YBa_2Cu_3O_{7-x}$ superconducting films have been fabricated $LaAlO_3(100)$ substrate by MOD method using dichloroacetic acid(DCA) as chelating solvent for preparing precursor solution. Heating rate was varied in order to optimize the calcination heat treatment condition in DCA-MOD method. Coated films were calcined at lower temperature up to $500^{\circ}C$ in flowing humid oxygen atmosphere. The heating rate was calcined from $13.3^{\circ}C/min\;to\;0.28^{\circ}C/min$. Conversion heat treatment was performed $800^{\circ}C$ for 2 h in flowing Ar gas containing 1000 ppm oxygen with a humidity of 9.45%. Surface and cross sectional SEM microstructures showed that particle sizes were increased with heating rate at a calcination step. The amount of pores was increased with heating rate in the calcined films. Dense microstructure and sharp texture were developed in an YBCO films after conversion heat treatment. A high critical current density (Jc) of $1.26MA/cm^2$ (@77 K and self-field) was obtained for the YBCO film which was prepared with a heating rate of $0.28^{\circ}C/min$.

  • PDF

알카리용액에서 구름베어링용 세라믹스의 부식이 구름마모 및 경도에 미치는 영향 (The Effect of Corrosion of Rolling Bearing Ceramics in Alkalic Solution on the Rolling Wear and Hardness)

  • 최인혁;김상근;박창남;윤대현;신동우
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제30회 추계학술대회
    • /
    • pp.154-159
    • /
    • 1999
  • Silicon nitride ceramic has been verified as an excellent rolling bearing material because of its high strength and outstanding rolling fatigue life properties. However under some corrosive circumstances it showed drawbacks such as hardness reduction and severe wear caused by corrosion. In this work, the variations of the rolling wear and hardness of three kinds of ceramics were studied for the specimen aged 15 days in alkali water (90$\pm$2$^{\circ}C$, 25 wt% NaOH). All of the specimens, \circled1Si$_3$N$_4$, \circled23Y-TZP and \circled33Y-TZP alloyed with 5 wt% CeO$_2$, were sintered and post-Hipped, and then polished up to 0.02 ${\mu}{\textrm}{m}$Ra of surface roughness. Rolling wear tests were conducted by MJ type rolling fatigue life tester under the initial theoretical maximum contact stress or 3.76 Gra and the spindle speed of 1,000 rpm. Spindle oil was used as a lubricant. The specimens were not worn before aging. For the specimen aged in alkali water, Si$_3$N$_4$and 3Y-TZP were worn by rolling wear tests, and hardness was decreased. While aging the specimens, the phase was transformed from tetragonal to monoclinic in 3Y-TZP and the microstructure change occurred in Si$_3$N$_4$. 3Y-TZP alloyed with 5 wt% CeO$_2$specimens were not worn after aging and no phase transformation occurred while aging.

  • PDF

경량 피스톤 로드를 위한 마찰용접 적용연구(SM45C/SM45C-Pipe 사용) (A Study on the Friction Welding for Light Piston-Rod(SM45C/SM45C-Pipe))

  • 민병훈;임형택;민택기
    • Journal of Welding and Joining
    • /
    • 제26권2호
    • /
    • pp.55-61
    • /
    • 2008
  • Various research to reduce weight of a car is achieving. This research is tendencious to manufacture solid piston rod of shock absorber as hollow piston rod using friction welding. This study deals with the friction welding of SM45C to SM45C-Pipe that is used in car shock absorber, The friction time was variable conditions under the conditions of spindle revolution of 2,000rpm, friction pressure of 55MPa, upset pressure of 75MPa, and upset time of 2.0seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests were studied of friction weld, and so the results were as follows. 1. In tensile strength, the hole processing is better than non-hole processing. 2. When the friction time was 1.5seconds under the conditions, the maximum tensile strength of the friction weld happened to be 869MPa, which is 103% of SM45C's tensile strength and 91% of SM45C's Pipe. 3. When the friction time was 2.0seconds under the conditions, the maximum bending strength of the friction weld happened to be 1599MPa, which is 80% of SM45C's bending strength and 118% of SM45C's Pipe.

고상확산접합된 Haynes230의 인장성질에 미치는 접합조건의 영향 (Effect of Bonding Condition on the Tensile Properties of Diffusion Bonded Haynes230)

  • 강길모;전애정;김홍규;홍성석;강정윤
    • Journal of Welding and Joining
    • /
    • 제31권3호
    • /
    • pp.76-83
    • /
    • 2013
  • This study investigated the effect of bonding temperature and holding time on microstructures and mechanical properties of diffusion bonded joint of Haynes230. The diffusion bonds were performed at the temperature of 950, 1050, and $1150^{\circ}C$ for holding times of 30, 60, 120 and 240 minutes at a pressure of 4MPa under high vacuum condition. The amount of non-bonded area and void observed in the bonded interface decreased with increasing bonding temperature and holding time. Cr-rich precipitates at the linear interface region restrained grain migration at $950^{\circ}C$ and $1050^{\circ}C$. However, the grain migration was observed in spite of short holding time due to the dissolution of precipitates to base metal in the interface region at $1150^{\circ}C$. Three types of the fracture surface were observed after tensile test. The region where the coalesce and migration of grain occurred much showed high fracture load because of base metal fracture whereas the region where those did less due to the precipitates demonstrated low fracture load because of interface fracture. The expected fracture load could be derived with the value of fracture area of base metal ($A_{BF}$) and interface ($A_{IF}$), $Load=201A_{BF}+153A_{IF}$. Based on this equation, strength of base metal and interface fracture were calculated as 201MPa and 153MPa, respectively.

시멘트 수밀성에 대한 불소계 에멀젼의 영향 (The Effect of Fluorine Based Emulsion on the Watertightness Properties of Portland Cement)

  • 강현주;송명신;송수재;박수행
    • 공업화학
    • /
    • 제20권5호
    • /
    • pp.505-510
    • /
    • 2009
  • 콘크리트의 내구성에 대한 대표적인 물리적 특성인 압축강도, 투수성능, 수밀성 등은 시멘트 재료의 미세구조에 의해 영향을 받는다. 특히 콘크리트의 내구성 향상을 위해서는 수밀성이 가장 중요하다 할 수 있다. 콘크리트의 수밀성 향상을 위한 재료는 유기 재료 및 무기질 재료가 다양하게 이용이 되고 있다. 본 연구에서는 불소계 에멀젼이 시멘트 수밀성능에 미치는 영향을 검토하였다. 불소계 에멀젼이 혼입된 시멘트 재료는 시멘트 계면 활성에 의한 수밀성능 개선 및 시멘트 pore 내에서 $CaF_2$ 미세 결정의 생성에 의해 시멘트 재료의 수밀성능을 개선시킬 수 있는 것으로 나타났다.

TFA-MOD법으로 제조된 다층 YBCO 박막의 미세구조 관찰 (Microstructural Observation of Multi-coated YBCO Films Prepared by TFA-MOD)

  • 장석헌;임준형;이창민;황수민;최준혁;심종현;주진호;김찬중
    • Progress in Superconductivity
    • /
    • 제9권2호
    • /
    • pp.167-172
    • /
    • 2008
  • We fabricated $YBa_2Cu_3O_{7-x}$(YBCO) films on (00l) $LaAlO_3$ substrates prepared by metal organic deposition(MOD) method using trifluoroacetate(TFA) solution. The films with various thicknesses were prepared by repeating the dip-coating and calcining processes. The effects of film thickness on phase formation, microstructures, and critical properties were evaluated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The microstructure and resultant critical current($I_C$) and critical current density($J_C$) varied remarkably with film thickness: The ($I_C$) value increased from 39 to 160 A/cm-width as the number of coatings increased from one to four, while the corresponding $J_C$ was measured to be in the range of $0.84-1.21\;MA/cm^2$. Both the $I_C$ and $J_C$ decreased when an additional coating was applied due to microstructural degradation, indicating that the optimum thickness is in the range of $1.1-1.8\;{\mu}m$. The possible cause for the decrease in the $I_C$ and $J_C$ value for film thicker than $1.8\;{\mu}m$ include non-uniform thickness, increased surface roughness, and the poor formability of the YBCO phase and texture arising from the insufficient heat treatment time with respect to the increased thickness.

  • PDF

Effect of Plasma Pretreatment on Superconformal Cu Alloy Gap-Filling of Nano-scale Trenches

  • 문학기;이정훈;이수진;윤재홍;김형준;이내응
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.53-53
    • /
    • 2011
  • As the dimension of Cu interconnects has continued to reduce, its resistivity is expected to increase at the nanoscale due to increased surface and grain boundary scattering of electrons. To suppress increase of the resistivity in nanoscale interconnects, alloying Cu with other metal elements such as Al, Mn, and Ag is being considered to increase the mean free path of the drifting electrons. The formation of Al alloy with a slight amount of Cu broadly studied in the past. The study of Cu alloy including a very small Al fraction, by contrast, recently began. The formation of Cu-Al alloy is limited in wet chemical bath and was mainly conducted for fundamental studies by sputtering or evaporation system. However, these deposition methods have a limitation in production environment due to poor step coverage in nanoscale Cu metallization. In this work, gap-filling of Cu-Al alloy was conducted by cyclic MOCVD (metal organic chemical vapor deposition), followed by thermal annealing for alloying, which prevented an unwanted chemical reaction between Cu and Al precursors. To achieve filling the Cu-Al alloy into sub-100nm trench without overhang and void formation, furthermore, hydrogen plasma pretreatment of the trench pattern with Ru barrier layer was conducted in order to suppress of Cu nucleation and growth near the entrance area of the nano-scale trench by minimizing adsorption of metal precursors. As a result, superconformal gap-fill of Cu-Al alloy could be achieved successfully in the high aspect ration nanoscale trenches. Examined morphology, microstructure, chemical composition, and electrical properties of superfilled Cu-Al alloy will be discussed in detail.

  • PDF