• Title/Summary/Keyword: Surface machining

Search Result 1,785, Processing Time 0.034 seconds

초음파 케비테이션을 이용한 디버링 기술 (Deburring Technology Using Ultrasonic Cavitation)

  • 원종률;최영재;이석우;최헌종
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1798-1803
    • /
    • 2003
  • Surface and edge finishing processes are important technological operations of in parts machining. Quality of the finished parts directly affect the performance of the whole product. Especially, edge quality, which depends on burr control, is extremely important. Burrs are undesirable projections of the material beyond the edge of the workpiece. A number of deburring processes have been developed such as barreling, brushing, chemical methods etc. But, there are only few publications in the area of applying ultrasonics to deburring. When ultrasonic vibration propagates in the liquid medium, a large number of bubbles are formed. These bubbles generate an extremely strong force, which can be used to remove burrs. Cavitation is used as a term to describe the erosion of parts caused by the action of cavities in liquid. The object of this study is to analyze the effects of ultrasonic cavitation in the deburring process. For this purpose, we introduce a new ultrasonic cavitation method, which efficiently removes the burrs. Experimental parameters to verify the deburring effects of ultrasonic cavitations are ultrasonic power, amplitude, distant of the transducer from the workpiece, deburring time and abrasive. It has been shown that deburring with ultrasonic cavitation in water is effective to burrs.

  • PDF

활성 납재를 이용한 질화규소/탄소강 접합 (Joining of Silicon Nitride to Carbon Steel using an Active Metal Alloys)

  • 최영민;정병훈;이재도
    • 한국재료학회지
    • /
    • 제9권2호
    • /
    • pp.199-204
    • /
    • 1999
  • As the engine design change to get high efficiency and performance of commercial diesel engine, surface wear of the cam follower becomes an important issues as applied load increasing at the contact face between cam follower and cam. Purpose of this study is the developing of the ceramic cam follower made of silicon nitride ceramic which is more wear resistant than the cast iron and sintered cam follower. Ceramic cam follower was made by direct brazing of thin ceramic disk to steel can follower body using active bracing alloy. Effect of joining condition on the interfacial phases and joining strength wer examined at bvarious joining temperatures, times, and cooling rates. Crowning resulted from the difference of thermal expansion coefficient after direct brazing without using any stress-relieving inter layer was measured. Interfacial phases are mainly titanium silicide and titanium nitride which are the products between active metal(Ti) in brazing alloy and silicon nitiride. Maximum joining strength of the ceramic metal joint, measured by DBS method, was 334MPa. Crowning(R) of the prototype ceramic cam follower was 1595mm. As machining for crowning is not necessary, production cost can be reduced.

  • PDF

비구면 유리 어레이 렌즈 성형용 초경합금 코어 초정밀 연삭 가공에 관한 연구 (Study on Ultra-Precision Grinding Processing for Aspheric Glass Array Lens WC Core)

  • 고명진;박순섭
    • 한국정밀공학회지
    • /
    • 제33권11호
    • /
    • pp.893-898
    • /
    • 2016
  • Plastic array lens are cheap to manufacture; however, plastic is not resistant to high temperatures and moisture. Optical glass represents a better solution but is a more-expensive alternative. Glass array lens can be produced using lithography or precision-molding techniques. The lithography process is commonly used, for instance, in the semiconductor industry; however, the manufacturing costs are high, the processing time is quite long, and spherical aberration is a problem. To obtain high-order aspherical shapes, mold-core manufacturing is conducted through ultra-precision grinding machining. In this paper, a $4{\times}1$ mold core was manufactured using an ultra-precision machine with a jig for the injection molding of an aspherical array lens. The machined mold core was measured using the Form TalySurf PGI 2+ contact-stylus profilometer. The measurement data of the mold core are suitable for the design criterion of below 0.5 um.

박판 전단시의 버 형성에 관한 연구 (A Study on The Burr Formation in Sheet Metal Shearing)

  • 신용승;김병희;김헌영;오수익
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.166-171
    • /
    • 2002
  • The objective of this paper is to investigate the effect of clearance and the configuration of die system on burr formation by FEM analysis and experimental tests. Compared with casting, forging and machining, shearing has been known, especially in heavy or mass-production industries, as a very economical and fast way to obtain the desired shape Recently, the shearing process becomes widely used in the small and light electronic component manufacturing industries. When shearing a part of sheet metal, the burr formed on the cutting edge is usually unavoidable. The burr would not only degrade the precision of products but also causes additional cost for the deburring process. In this paper, the influence of shearing parameters such as clearance and configurations of the lower pad (ejector) on burr formation is investigated by using the experimental and numerical approach. From the experimental results, it has been shown that the more narrow clearance gives the smaller burr height and the higher shearing forces. The removal of lower holder also makes the sheared surface integrity and the dimensional accuracy become worse. The FEM results (using DEFORM-2D) show good agreement with the experimental results.

목형용(木型用) 춘양목(春陽木)의 절삭가공(切削加工) 특성(特性)에 관(關)한 연구(硏究)(제1보(第1報)) - 절삭중(切削中) 공구면(工具面)의 응력분포에 미치는 접촉(接觸)칩의 영향(影響) - (Study on the Machinability of Pinus densiflora at Chunyang District for Wood Patterns - Effect of Chip-Tool Contact Stress Distribution in Workpiece During of Wood Machining -)

  • 김정두
    • Journal of the Korean Wood Science and Technology
    • /
    • 제16권4호
    • /
    • pp.54-60
    • /
    • 1988
  • Machinabilities means inherent properties of pinus densiflora at Chunyang district to be CNC machined easily or not, and processing abilities of the tool and machine together. This explanation signifies that machinabilities have two phases of signification, depended on considering and stress either materials or tools preferentially. This paper discuss machinabilities, the following items are usually employed as the indices of stress distribution at the cutting tool rake face. The stress distributions on the chip - tool contact surface at the early stage of the chip forming and under the stage of fringe pattern in wood cutting were analyzed the photoelastic method. The tool used in the present experiment was the special cutting tool H.S.S. one made in laboratory. And isochromatic fringe pattern and isolinic line of work piece by chip-behavior during the cutting operation were photographed with the feed camera continuously. The effects on the stress, distribution on the rake face of the epoxy tool and the strain distribution in the work piece of wood plate by chip behavior are cleared in pre cent experiment.

  • PDF

도트 패턴을 이용한 회절 격자 금형 제작 (Fabrication of Diffraction Grating Mold Using Dot Pattern)

  • 노지환;이제훈;손현기;서정;신동식;정용운
    • 한국레이저가공학회지
    • /
    • 제9권3호
    • /
    • pp.1-5
    • /
    • 2006
  • Diffraction grating is the optical device which has periodic pattern. Decorative logotypes is the one of application of diffraction grating. In this paper diffraction grating for decorative logotype is fabricated by dot pattern in stead of line pattern. A metallic mold for diffraction gratings is fabricated with a mode-locked 12 ps Nd:YVO4 laser. Laser pulses with a wavelength of 355nm are irradiated on the surface of NOK 80, a mold material, to generate dot patterns. In order to minimize the dot diameter, laser power is set just above the ablation threshold of NOK 80. Results show that the spectrum from the fabricated mold is good enough for some industrial application

  • PDF

UV Roll 임프린팅 공정을 이용한 렌티큘러 렌즈 제작 (Fabrication of Lenticular Lens by Continuous UV Roll Imprinting)

  • 명호;차주원;김석민;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.91-94
    • /
    • 2005
  • With increasing demands for large-scale micro-optical components in the field of digital display, the establishment of large-scale fabrication technology fur polymeric patterns has become a priority. The starting point of any polymer replication process is the mold, and the mold often has flat surface. However, It is very hard to replicate large-scale micro patterns using the flat mold, because the cost of large-scale flat mold was very high, and some uniformity and releasing problems were often occurred in large scale flat molding process. In this study, a UV roll imprinting system to overcome the financial and fabrication issues of large-scale pattern replication process was designed and constructed. As a practical example of the system, a lenticular lens with radius of curvature of $223{\mu}m$ and pitch of $280{\mu}m$, which was used to provide wide viewing angle in projection TV, was designed and fabricated. The roll stamper was fabricated using direct machining process of aluminum roll base. Finally, the shape accuracy and uniformity of roll imprinted lenticular lens sheet were measured and analyzed.

  • PDF

세라믹 소재의 연삭가공 특성 분석 (Analysis of Grinding Characteristics of Ceramic (SiC) Materials)

  • 박휘근;박상현;박인승;양동호;차승환;하병철;이종찬
    • 한국기계가공학회지
    • /
    • 제17권1호
    • /
    • pp.16-22
    • /
    • 2018
  • Silicon carbide (SiC) is used in various semiconductor processes because it has superior thermal, mechanical, and electrical characteristics as well as higher chemical and corrosion resistance than existing materials. Due to these characteristics, various manufacturing technologies have been developed for SiC. A recent development among these technologies is Chemical Vapor Deposition SiC (CVD-SiC). Many studies have been carried out on the processing and manufacturing of CVD-SiC due to its different material characteristics compared to existing materials like RB-SiC or Sintered-SiC. CVD-SiC is physically stable and has excellent chemical and corrosion resistance. However, there is a problem with increasing the thickness, because it is manufactured through a deposition process. Additionally, due to its high strength and hardness, it is difficult to subject to machining.

도트 패턴을 이용한 회절 격자 금형 제작 (Fabrication of diffraction grating mold using dot pattern)

  • 노지환;이제훈;손현기;서정;신동식;정용운
    • 한국레이저가공학회:학술대회논문집
    • /
    • 한국레이저가공학회 2006년도 추계학술발표대회 논문집
    • /
    • pp.114-117
    • /
    • 2006
  • Diffraction grating is the optical device which has periodic pattern. Decorative logotypes is the one of application of diffraction grating. In this paper diffraction grating for decorative logotype is fabricated by dot pattern in stead of line pattern. A metallic mold for diffraction gratings is fabricated with a mode-locked 12 ps $Nd:YVO_4$ laser. Laser pulses with a wavelength of 355nm are irradiated on the surface of NOK 80, a mold material, to generate dot patterns. In order to minimize the dot diameter, laser power is set just above the ablation threshold of NOK 80. Results show that the spectrum from the fabricated mold is good enough for some industrial application.

  • PDF

Analysis of Mechanical Characteristics of Polymer Sandwich Panels Containing Injection Molded and 3D Printed Pyramidal Kagome Cores

  • Yang, K.M.;Park, J.H.;Choi, T.G.;Hwang, J.S.;Yang, D.Y.;Lyu, M.-Y.
    • Elastomers and Composites
    • /
    • 제51권4호
    • /
    • pp.275-279
    • /
    • 2016
  • Additive manufacturing or 3D printing is a new manufacturing process and its application is getting growth. However, the product qualities such as mechanical strength, dimensional accuracy, and surface quality are low compared with conventional manufacturing process such as molding and machining. In this study not only mechanical characteristics of polymer sandwich panel having three dimensional core layer but also mechanical characteristics of core layer itself were analyzed. The shape of three dimensional core layer was pyramidal kagome structure. This core layer was fabricated by two different methods, injection molding with PP resin and material jetting type 3D printing with acrylic photo curable resin. The material for face sheets in the polymer sandwich panel was PP. Maximum load, stiffness, and elongation at break were examined for core layers fabricated by two different methods and also assembled polymer sandwich panels. 3D printed core showed brittle behavior, but the brittleness decreased in polymer sandwich panel containing 3D printed core. The availability of 3D printed article for the three dimensional core layer of polymer sandwich panel was verified.