• Title/Summary/Keyword: Surface leakage

Search Result 776, Processing Time 0.024 seconds

The Effect of the Non Soluble Industrial Dust on the Electrical Properties of Distribution Porcelain Suspension Insulators (비용해성 산업용 분진이 배전용 자기제 현수애자의 전기적 특성에 미치는 영향)

  • Kim, Chan-Young;Song, Il-Keun;Kim, Ju-Yong;Han, Jae-Hong;Kim, Dong-Myung;Lee, Byung-Sung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.4
    • /
    • pp.182-189
    • /
    • 2001
  • In this paper, the distribution suspension porecelain insulators which had been used for long periods in the contaminated area were evaluated. The contaminated area is close to the sea and in the high density of industries. The heavily contaminated domestic and imported insulators were investigated by using electrical characteristics, such as power-frequency dry flashover voltage, power-frequency wet, flahover voltage, and leakage current. Also, these electrical results were compared with the contaminants on the surface. From these analysis, we found that the contamination from the industrial dust, only slightly decreased flashover voltage and increased leakage current. Therefore, the electrical properties of insulators used for 30 years in the area of coast and industrial complex were not much changed.

  • PDF

Study on the Generation of Leakage Current by the Fourier Transform Infrared Analysis (푸리에변환 적외선분광분석법에 의한 누설전류의 발생 원인에 대한 연구)

  • Oh, Teresa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.514-519
    • /
    • 2007
  • The surfaces of $SiO_2$ films were treated by PMMA diluted solutions, and analyzed the chemical shift from Fourier Transform Infrared Spectrometer. The $SiO_2$ film treated by PMMA diluted solution changed the properties of the surface, and showed the blue and red shift according to the concentration of PMMA. The C-H bond elongation effect due to the high electro-negative atom chlorine showed the red shift, and makes the final material with the cross-link structure. The leakage current was efficiently reduced at the sample No 7 with the red shift, witch depends on the electron deficient group.

A Study on the Surface Aging of polymer Insulating Materials Under Salt-Fog Condition (염무 조건에서의 고분자 절연재료의 표면 노화특성에 관한 연구)

  • Huh, Chang-Su;Park, Sang-Durk
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1039-1041
    • /
    • 1995
  • This paper describes the performance of the widely used polymeric insulating material for outdoor insulation. Various methods to describe the surface aging of polymer materials such as the peak and average of the leakage current, the cumulative charge, the weight loss have been investigated. The relationship between surface current, time are plotted and discussed.

  • PDF

Electrical Characteristics of BST Thin Films with Various Film Thickness (BST 박막의 두께 변화에 따른 전기적 특성에 관한 연구)

  • 강성준;정양희
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.5
    • /
    • pp.696-702
    • /
    • 2002
  • The BST $({Bal-xSrxTiO_3})$ (50/50) thin film has been grown by RF magnetron reactive sputtering and its characteristics such as crystallization, surface roughness, and electrical properties have been investigated with varying the film thickness. The crystallization and surface roughness of BST thin film are investigated by using XRD and AFM, respectively. The BST thin film annealed at $800^{\circ}C$ for 2 min has pure perovskite structure and good surface roughness of 16.1$\AA$. As the film thickness increases from 80 nm to 240 nm, the dielectric constant at 10 KHz increases from 199 to 265 and the leakage current density at 250 ㎸/cm decreases from $0.779 {\mu}A/{cm^2} to 0.184 {\mu}A/{cm^2}$. In the case of 240 nm-thick BST thin film, the charge storage density and leakage current density at 5V are 50.5 fC/${{\mu}m^2} and 0.182 {\mu}A/{cm^2}$, respectively. The values indicate that the BST thin film is a very useful dielectric material for the DRAM capacitor.

Occupational Exposure during Intraperitoneal Pressurized Aerosol Chemotherapy Using Doxorubicin in a Pig Model

  • Wongeon Jung;Mijin Park;Soo Jin Park;Eun Ji Lee;Hee Seung Kim;Sun Ho Chung;Chungsik Yoon
    • Safety and Health at Work
    • /
    • v.14 no.2
    • /
    • pp.237-242
    • /
    • 2023
  • Background: This study evaluated occupational exposure levels of doxorubicin in healthcare workers performing rotational intraperitoneal pressurized aerosol chemotherapy (PIPAC) procedures. Methods: All samples were collected during PIPAC procedures applying doxorubicin to an experimental animal model (pigs). All procedures were applied to seven pigs, each for approximately 44 min. Surface samples (n = 51) were obtained from substances contaminating the PIPAC devices, surrounding objects, and protective equipment. Airborne samples were also collected around the operating table (n = 39). All samples were analyzed using ultra-high performance liquid chromatography-mass spectrometry. Results: Among the surface samples, doxorubicin was detected in only five samples (9.8%) that were directly exposed to antineoplastic drug aerosols in the abdominal cavity originating from PIPAC devices. The telescopes showed concentrations of 0.48-5.44 ng/cm2 and the trocar showed 0.98 ng/cm2 in the region where the spraying nozzles were inserted. The syringe line connector showed a maximum concentration of 181.07 ng/cm2, following a leakage. Contamination was not detected on the surgeons' gloves or shoes. Objects surrounding the operating table, including tables, operating lights, entrance doors, and trocar holders, were found to be uncontaminated. All air samples collected at locations where healthcare workers performed procedures were found to be uncontaminated. Conclusions: Most air and surface samples were uncontaminated or showed very low doxorubicin concentrations during PIPAC procedures. However, there remains a potential for leakage, in which case dermal exposure may occur. Safety protocols related to leakage accidents, selection of appropriate protective equipment, and the use of disposable devices are necessary to prevent occupational exposure.

Performance Analysis of Mechanical Face Seal Used for Primary Heat Transport Pump in Heavy Water Reactor (중수로 냉각재 펌프용 미케니컬 페이스 실의 성능 해석)

  • Kim, Jeong-Hun;Kim, Dong-Wook;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.27 no.5
    • /
    • pp.240-248
    • /
    • 2011
  • Mechanical face seal installed in primary heat transport pump used for heavy water reactor prevents leakage of working fluid using thin working fluid film between primary seal ring and mating ring. If the leakage of working fluid exceeds the allowable volume, serious accident can be happened by the trouble of primary heat transport pump. The thinner fluid film exists between primary seal ring and mating ring, the less working fluid leaks out. On the other hand, if the thickness of fluid film is not enough, the life of mechanical face seal will be reduced by friction and wear. Therefore appropriate design is necessary to maximize the performance and life of mechanical face seal. In this study, numerical analysis using finite volume method was conducted to investigate the performance of mechanical face seals which have same deep straight groove and 11 different net coning values. As results, equilibrium clearance between primary seal ring and mating ring, leakage volume of working fluid, friction torque on sealing surface and stiffness of working fluid film were obtained. With increasing net coning value, equilibrium clearance and leakage volume increase, and friction torque and stiffness of fluid film decrease.

Numerical Investigation on Internal Flow Field of a Single-Stage Transonic Axial Compressor (수치해석을 활용한 1단 천음속 압축기 내부 유동장 분석)

  • Song, Ji-Han;Hwang, Oh-Sik;Park, Tae Choon;Lim, Byung-Jun;Yang, Soo-Seok;Kang, Young-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.85-91
    • /
    • 2012
  • Numerical simulations on a single stage transonic compressor which is developed by Korea Aerospace Research Institute are carried out and their results are compared with experimental data for cross validations. Comparisons between experimental data and numerical simulation results show good agreements on a performance curve, static pressure and total pressure distributions. CFD results show that there is a clear interaction between tip leakage flow and normal shock in the rotor passage. Tip leakage flows are almost dissipated after the strong normal shock and it forms a strong recirculation near the blade tip. Also a large separation region grows on the suction surface just after the normal shock. As the pressure ratio and blade loading increase, the normal shock line moves upstream and it starts to deviate from the blade leading edge. Then the tip leakage flow does not overcome the strong adverse pressure gradient and flow blockage originated from the tip recirculation region. As a result, the tip leakage flow heads for the neighboring blade leading edge, which results in a compressor stall.

Effects of the Inlet Boundary Layer Thickness on the Loss Mechanism in an Axial Compressor (입구 경계층 두께가 축류 압축기 손실에 미치는 영향)

  • Choi, Minsuk;Baek, Jehyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.419-426
    • /
    • 2004
  • A three-dimensional computation was conducted to understand effects of the inlet boundary layer thickness on the loss mechanism in a low-speed axial compressor operating at the design condition(${\phi}=85\%$) and near stall condition(${\phi}=65\%$). At the design condition, the flow phenomena such as the tip leakage flow and hub comer stall are similar independent of the inlet boundary layer thickness. However, when the axial compressor is operating at the near stall condition, the large separation on the suction surface near the casing is induced by the tip leakage flow and the boundary layer on the blade for thin inlet boundary layer but the hub corner stall is enlarged for thick inlet boundary layer. These differences of internal flows induced by change of the boundary layer thickness on the casing and hub enable loss distributions of total pressure to be altered. When the axial compressor has thin inlet boundary layer, the total pressure loss is increased at regions near both casing and tip but decreased in the core flow region. In order to analyze effects of inlet boundary layer thickness on total loss in detail, using Denton's loss models, total loss is scrutinized through three major loss categories in a subsonic axial compressor such as profile loss, tip leakage loss and endwall loss.

  • PDF

Analysis of Surface Tracking of Micro and Nano Size Alumina Filled Silicone Rubber for High Voltage AC Transmission

  • Loganathan, N.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.345-353
    • /
    • 2013
  • This paper discusses the experimental results in an effort to understand the tracking and erosion resistance of the micro and nano size $Al_2O_3$ filled silicone rubber (SIR) material which has been studied under the AC voltages, with ammonium chloride as a contaminant, as per IEC 60587 test procedures. The characteristic changes in the tracking resistance of the micro and nano size filled specimens were analyzed through leakage current measurement and the eroded masses were used to evaluate the relative erosion and tracking resistance of the composites. The fundamental, third and fifth harmonic of the leakage current during the tracking study were analyzed using moving average current technique. It was observed that the harmonic components of leakage current show good correlation with the tracking and erosion resistance of the material. The thermogravimetry-derivative thermo gravimetric (TG-DTG) studies were performed to understand the thermal degradation of the composites. The physical and chemical studies were carried out by using scanning electron microscope (SEM), Energy Dispersive X-ray analysis (EDAX) and Fourier Transform Infra-red (FTIR) Spectroscopy. The obtained result indicated that the performance of nano filled SIR was better than the micro filled SIR material when the % wt. of filler increased.

Magnetic Flux Leakage (MFL) based Defect Characterization of Steam Generator Tubes using Artificial Neural Networks

  • Daniel, Jackson;Abudhahir, A.;Paulin, J. Janet
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.34-42
    • /
    • 2017
  • Material defects in the Steam Generator Tubes (SGT) of sodium cooled fast breeder reactor (PFBR) can lead to leakage of water into sodium. The water and sodium reaction will lead to major accidents. Therefore, the examination of steam generator tubes for the early detection of defects is an important requirement for safety and economic considerations. In this work, the Magnetic Flux Leakage (MFL) based Non Destructive Testing (NDT) technique is used to perform the defect detection process. The rectangular notch defects on the outer surface of steam generator tubes are modeled using COMSOL multiphysics 4.3a software. The obtained MFL images are de-noised to improve the integrity of flaw related information. Grey Level Co-occurrence Matrix (GLCM) features are extracted from MFL images and taken as input parameter to train the neural network. A comparative study on characterization have been carried out using feed-forward back propagation (FFBP) and cascade-forward back propagation (CFBP) algorithms. The results of both algorithms are evaluated with Mean Square Error (MSE) as a prediction performance measure. The average percentage error for length, depth and width are also computed. The result shows that the feed-forward back propagation network model performs better in characterizing the defects.