• Title/Summary/Keyword: Surface hardness change

Search Result 263, Processing Time 0.025 seconds

Deposition of $SiC_xN_y$ Thin Film as a Membrane Application

  • Huh, Sung-Min;Park, Chang-Mo;Jinho Ahn
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.1
    • /
    • pp.39-43
    • /
    • 2001
  • $SiC_{x}N$_{y}$ film is deposited by electron cyclotron resonance plasma chemical vapor deposition system using $SiH_4$(5% in Ar), $CH_4$ and $N_2$. Ternary phase $SiC_{x}N$_{y}$ thin film deposited at the microwave power of 600 W and substrate temperature of 700 contains considerable amount of strong C-N bonds. Change in $CH_4$flow rate can effectively control the residual film stress, and typical surface roughness of 34.6 (rms) was obtained. Extreme]y high hardness (3952 Hv) and optical transmittance (95% at 633 nm) was achieved, which is suitable for a LIGA mask membrane application.

  • PDF

Microstructures and Mechanical Properties of Pure Titanium Casting Specimens with Mold Temperatures (순수 티타늄 주조체의 주형온도에 따른 미세조직 및 기계적 성질)

  • Cha, Sung-Soo;Nam, Sang-Yong;Song, Young-Ju
    • Journal of Technologic Dentistry
    • /
    • v.32 no.4
    • /
    • pp.307-315
    • /
    • 2010
  • Purpose: The purpose of this study was to investigate the change of microstructures and mechanical properties of pure titanium casting specimens as a function of mold temperatures. Methods: The pure titanium castings were fabricated using the centrifugal vacuum casting method with different mold temperatures of $200{\sim}500^{\circ}C$. The resulting castings were characterized by optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and vicker,s hardness tester. Results: In case of the mold temperatures over $400^{\circ}C$, the porosity, surface crack and large grain size were observed in resulting castings. Conclusion: In this work, The most suitable mold temperature in casting of pure titanium was $300^{\circ}C$.

A Study on the Rotary Swaging Machine and Process Development of Automotive Tubular Drive Shaft (자동차용 중공 구동축 성형장치 개발 및 성형공정에 관한 연구)

  • 오태원;유택인;현동훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.344-350
    • /
    • 2003
  • This Paper deals with the weight-lowering and the traits of NVH(Noise, Vibration and Harshness) by the development of tubular shaft replacing the existing solid Drive Shaft for the lighter and less-noisy automobiles. By the review of Swaging Process this study reveals the various forming traits of Swaging, one of the forming methods for tubular shafts. Furthermore, it showed the possibility of Drive Shaft manufacturing through designing & manufacturing of Swaging machine for tubular shaft, and the production ar analysis of the tubular shaft with the relevant process and tools. This study also shows that the forming by swaging not only makes the mass production of tubular Drive Shaft possible but also may be widely applied to other products with many advantages in review of dimensional precision, thickness change, hardness increase and surface roughness of the swaged products.

  • PDF

Study on the Change of Physical Properties with Silica Contents in Solution Styrene-Butadiene Rubber (SSBR)/Silica Composites

  • Kim, Tae Yeop;Won, Sung Yeon;Kang, Shin Hye;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.52 no.1
    • /
    • pp.17-21
    • /
    • 2017
  • The optimum mixing conditions of silica and silane containing rubber composites were evaluated by investigating the properties of rubber composites prepared with a silica composition of 10, 20, 40, 60, and 80 g, respectively. The crosslinking rate decreased with increasing silica content, with he promoters being adsorbed on the silica surface with in the rubber composite. As a result, the increase in crosslinking time resulted in the destruction of the silica structure. The increase of the bound rubber content due to the destruction of the silica structure inhibited the chain motion of the polymer molecules and reduced the cohesion of the silica itself. Finally, the increase of silica content showed the increase of hardness, tensile strength, and storage modulus of rubber composites.

A study of CrC Sputtering as an Alternative Method for Cr Electroplating (전해 크롬도금 대체용으로서의 CrC 스퍼터링에 관한 연구)

  • Im, Jong-Min;Choe, Gyun-Seok;Lee, Jong-Mu
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.82-88
    • /
    • 2002
  • Chromium carbide films were deposited on high speed steels using a Cr_3C_2$ target by magnetron sputtering. Effects of the deposition parameters (power, Ar pressure and substrate temperature) on deposition rates and surface roughnesses of the films were investigated. The morphologies of those films were characterized by scanning electron microscopy and atomic force microscopy. The grain size of the samples deposited using dc-power is larger than that using equivalent rf-power. The hardness of the sample increases with increasing rf-power, whereas the elastic modulus nearly does not change with rf-power. The optimum sputter deposition conditions for chromium carbide on high speed steels in the corrosion resistance aspect were found to be the rf-power with small roughness.

Nondestructive Evaluation of Concrete Strength Considering Aging Effect (재령을 고려한 콘크리트의 비파괴강도평가)

  • Kim, Young-Jin;Lee, Sang-Min;Choi, Hong-Shik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.157-165
    • /
    • 1999
  • The nondestructive testing methods are commonly used to determine the in-situ compressive strength of concrete. The correlation curves to evaluate the effect of aging on the development of concrete strength was proposed. Thirty two ${\Phi}10{\times}20cm$ cylinder specimens were cast from 5 batches having different strength levels. The correlation curves for rebound hammer method, ultrasonic pulse velocity method and combined method were derived from the laboratory tests and multiple regression analysis. To account for the change of condition such as surface hardness, internal moisture contents, the aging coefficients are applied to the correlation curves. From the comparison the nondestructive strength with the core strength taken from the existing reinforced concrete structures, the validity of the proposed correlation curves are verified.

  • PDF

Study on Mechanical Stability and Safety of Electroacupuncture to Localized Fat Deposit (지방분해를 위한 장침 전기자극 시술의 안정성 및 안전성 연구)

  • Jin, Sung-Soon;Song, Yun-Kyung;Lim, Hyung-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.19 no.1
    • /
    • pp.169-186
    • /
    • 2009
  • Obejectives : The electroacupuncture(EA) on regional fat is often used by oriental medicine doctors in Korea. However, there have been few studies about safety and biocompatibility of its application. Therefore we investigated the safety and change of mechanical character of electroacupuncture after its application on localized fat deposit. Methods : Online surveys were completed from Aug 21 2008 to Aug 28 2008, by email, the online survey data were obtained from nearly 10,002 Korean medical doctors who listed their email address on the website of association of korean oriental medicine. This study includes an experiment on the physical strength and biological property of long needles. We represent each method which were collected in advance survey, then sealed the needles off and did laboratory experiment, which includes surface observation, analysis, vickers hardness test, and also biocompatibility and toxicity test. Results : There was no considerable difference about the physical property after applying electric current, the cell survival rate did not change in comparison with controlled group either. Conclusions : Although it seems there are no considerable acupuncture-related problem, we still need additional studies about clinical effectiveness difference related operation condition. Besides, it will need research on the actual condition, standardization, and criteria about the comsumed needle in Korea.

A Study on the Microstructures and Tensile Properties of Heat-Treated Cast Ti-(44-54)at.%Al Alloys (Ti-(44-54)at.%Al 열처리 주조합금의 미세조직과 인장특성에 관한 연구)

  • Jung, Jae-Young
    • Journal of Korea Foundry Society
    • /
    • v.37 no.6
    • /
    • pp.199-206
    • /
    • 2017
  • In this study, the variations of microstructures and tensile properties of Ti-(44-54)at.%Al binary alloys were investigated. The heat-treated microstructure depended greatly on their solidification structure and annealing temperature. We measured the variations of volume fractions of primary and secondary lamellar structure as a function of the heat treatment temperature in a Ti-47at.%Al alloy. The variation of ductility as a function of Al content was in good agreement with the change of fracture mode in the tensile fracture surface. It can be inferred that the variations of yield stress and hardness of ${\gamma}$ phase in a single ${\gamma}$-phase field region are enhanced by anti-site defects created by deviations from the stoichiometric composition. In a Ti-47at.%Al alloy within the (${\alpha}_2+{\gamma}$) two-phase field, the yield stress tended to be the maximum at a near equal volume fraction of lamellar and ${\gamma}$ grains. The ductility depended sensitively on the overall grain size and Al content. The calculation of fracture strain using Chan's model indicated that the change of ductility as a function of annealing temperature was primarily determined by the variations in the overall grain size and lamellar volume fraction.

Effect of Vibrational Amplitude on Friction and Wear Properties of Magnetorheological Elastomer (진폭에 따른 자기유변탄성체의 마찰 특성 연구)

  • Lian, Chenglong;Lee, Kwang-Hee;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.39-43
    • /
    • 2016
  • Magnetorheological elastomers (MREs) are a type of “smart” material, and their properties can be controlled rapidly and reversibly under the influence of an external stimulus. The application of an external magnetic field can change the shear modulus, hardness, and friction coefficient of MREs. The friction can cause vibration; moreover, the vibration can affect friction. The change of friction depends on the relative motion, normal force, roughness of the rubbing surfaces, material type, temperature, lubrication, relative humidity, and vibration condition. As MREs are a type of “smart material,” their friction coefficient can be reduced by applying an external magnetic field—the applications of this feature in engineering have been widely studied. However, the friction properties of MREs under vibration have not been tested to date. In this study, MRE samples and a reciprocating friction tester were fabricated. The friction coefficient was measured to evaluate the friction properties under various vibration conditions; subsequently, the wear depth and wear surface profile of the MRE were observed in order to evaluate the wear properties. The results show that the friction coefficient of the MREs decreased when a magnetic field was applied. Moreover, the friction coefficient decreased when the vibrational amplitudes increased. The wear depth of the MRE also decreased as the vibrational amplitudes increased.

Characteristic on the Heating Deformation of Sleeve by Heating Method (열처리공법에 따른 Sleeve의 열처리 변형 특성)

  • Youn, Il-Joong;Lyu, Sung-Ki;An, Chang-Woo;Ahn, In-Hyo
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.3 s.75
    • /
    • pp.1-7
    • /
    • 2006
  • Nowadays, out of other transmission parts, the sleeve is getting more and more important part for exact and smooth shifting from gear ratio change whenever drivers are needed. To exact and smooth shifting when drivers are needed, all the parts connected with gear shifting should be machined exactly and having dimensions designers are intended. Especially, in case of the sleeve that the most important functional part to shift from gear ratio change that drivers are intended, it needs high precision grade and quality in both sides runout and outer dia runout as well as inner spline small dia & large dia. Because it's assembled with the synchro hub spline and shifted directly with the mating cone. So, it should be applied the hear treatment(hereinafter referred to H.T.M.T) to prevent the friction and percussion loss from shifting with mating cone. At this time, the deformation problems are raised from almost H.T.M.T. process and it makes the inferior part.