• Title/Summary/Keyword: Surface electric resistivity

Search Result 101, Processing Time 0.021 seconds

PTCR Characteristics of BaTiO$_3$Thin Films made by rf/dc Magnetron Sputter Technique

  • Song, Min-Jong;So, Byung-Moom;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.2
    • /
    • pp.28-31
    • /
    • 2000
  • BaTiO$_3$cerameic thin films doped with Mn were manufactured by rf/dc magnetron sputter technique. We have investigated crystal structure, surface morphology and PRCR(positive-temperature coefficient of resistance) characteristics of the specimen depending on second heat-treatment temperature. Second heat treatment of the specimen were performed in the temperature range of 400 to 1350$\^{C}$ X-ray diffraction patterns of BaTiO$_3$ thin films show that the specimen heat treated below 600$\^{C}$ is an amorphous phase and the one heat treated above 1100$\^{C}$ forms a poly-crystallization . In this specimen heat-treated at 1300$\^{C}$, a lattice constant ratio(c/a) was 1.188. Scanning electron microscope(SEM) image of BaTiO$_3$ thin films of the specimen heat treated in between 900 and 1100$\^{C}$ shows a grain growth. At 1100$\^{C}$, the specimen stops grain-growing and becomes a poly-crystallization . A resistivity-temperature characteristics of the specimen depends on the doping concentrations of Mn. A resistivity ratio between the value at room temperature and the one above Curie temperature was 10$^4$ for pure BaTiO$_3$ thin films and 10$\^$5/ fo BaTiO$_3$ : additive 0.127mol% MnO

  • PDF

Low Temperature Deposition of ITO Thin Films for Flat Panel Displays by ICP Assisted DC Magnetron Sputtering (유도결합 플라즈마(ICP) Sputtering에 의한 평판 디스플레이(FPD)용 ITO 박막의 저온 증착)

  • 구범모;정승재;한영훈;이정중;주정훈
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.3
    • /
    • pp.146-151
    • /
    • 2004
  • Indium tin oxide (ITO) is widely used to make a transparent conducting film for various display devices and opto-electric devices. In this study, ITO films on glass substrate were fabricated by inductively coupled plasma (ICP) assisted dc magnetron sputtering. A two-turn rf coil was inserted in the process chamber between the substrate and magnetron for the generation of ICP. The substrates were not heated intentionally. Subsequent post-annealing treatment for as-deposited ITO films was not performed. Low-temperature deposition technique is required for ITO films to be used with heat sensitive plastic substrates, such as the polycarbonate and acrylic substrates used in LCD devices. The surface roughness of the ITO films is also an important feature in the application of OLEDs along with the use of a low temperature deposition technique. In order to obtain optimum ITO thin film properties at low temperature, the depositions were carried out at different condition in changing of Ar and $O_2$ gas mixtures, ICP power. The electrical, optical and structural properties of the deposited films were characterized by four-point probe, UV/VIS spectrophotometer, atomic force microscopy(AFM) and x-ray diffraction (XRD). The electrical resistivity of the films was -l0$^{-4}$ $\Omega$cm and the optical transmittance in the visible range was >85%. The surface roughness ( $R_{rms}$) was -20$\AA$.>.

Analysis of the TE Scattering by a Resistive Strip Grating Over a Grounded Dielectric Plane (접지된 유전체 평면위의 저항띠 격자구조에 의한 TE 산란 해석)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.3
    • /
    • pp.198-204
    • /
    • 2006
  • In this paper, TE(transverse electric) scattering problems by a resistive strip grating on a grounded dielectric plane according to the strip width and grating period, the relative permittivity and thickness of dielectric layer, and incident angles of a TE plane wave are analyzed by applying the FGMM(Fourier-Galerkin Moment Method) known as a numerical procedure. The induced surface current density is simply expanded in a Fourier series by using the exponential function as a simple function. The reflected power gets increased according as the relative permittivity and thickness of dielectric multilayers gets increased, the sharp variations of the reflected power are due to resonance effects were previously called wood's anomallies[7]. To verify the validity of the proposed method, the numerical results of normalized reflected power for the uniform resistivity R = 0 as a conductive strip case show in good agreement with those in the existing paper.

  • PDF

Heavy Metal Contamination in Soils and Groundwater in the Vicinity of the Sindae-dong Waste Disposal Site, Taejon (대전시 신대동 폐기물매립지 주변지역에서의 지하수 및 토양의 중금속오염)

  • 김경웅;손호웅
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.2
    • /
    • pp.85-89
    • /
    • 1994
  • Groundwater and soil contamination by the leak of leachates from the waste disposal site (WDS) is one of the serious environmental problems, and leachates are generally produced by the biogeochmical decomposition and/or precipitation in the WDS. At the Sindae-dong waste disposal site in Taejon, the average Cu, Pb and Zn concentrations in the surrounding soils are higher than those in other Korean soils but these are not high enough to cause any harmful effect to man through the crop plants. Copper, Pb and Zn are not detected in the groundwater samples but the pH of the sample is 5.6 which is not suitable for the drinking water. In contaminated soil samples, the heavy metal concentrations are higher in subsurface soil than in surface soil and it may be influenced by the leachates in groundwater. With the electric resistivity method, the water contains layers are found in contaminated soils and the resistivity values are considerably low because of the dispersion of plume by the leak of leachates. According to the distance from the leak point of leachate, resistivity values increased and heavy metal concentraions in soils decreased due to the reduction of plume.

  • PDF

Effects of Yittrium and Manganese on the PTCR Barium Titanate Synthesized by Ultrasonic Spray Pyrolysis (초음파 분무 열분해법으로 합성한 PTCR Barium Titanate에 미치는 Y와 Mn의 효과)

  • 김복희;이정형;윤연현;최의석;정웅기
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.10
    • /
    • pp.1169-1177
    • /
    • 1995
  • Barium nitrate and yittrium nitrate were dissolved into distilled water. Titaium hydroxide precipitated from titanium chloride with NH4OH was dissolved into nitric acid. Each aqueous solution was mixed for 12 hr in the composition of Ba1-xYxTiO3 (x=0.1∼0.6) and the concentration of mixed solution was 0.1 mol/ι. The mixed solution was sprayed with an ultrasonic atomizer and carried into an electric furnace which was kept at 900∼1000$^{\circ}C$ and pyrolyzed. Pyrolyzed powders were collected on the glass filter with vacuum pump. Aqueous Mn solutiion was added into the synthesized powders, mixed with ultrasonic vibration and sintered at 1300∼1400$^{\circ}C$. Synthesized powders were characterized with SEM, XRD, DT-TGA, and BET. Microsture and resistivity of sintered body were investigated with SEM and multimeter. The results of this experiment were as follows; 1) Yittrium dooped BaTiO3 powders were synthesized above 950$^{\circ}C$. 2) The average particle sizes of powders from BET specific surface area and SEM were 0.045$\mu\textrm{m}$, 0.046$\mu\textrm{m}$ respectively. The particle size distribution was narrow in the range of 0.1∼1.0$\mu\textrm{m}$ from SEM. 3) Room temperature resistivity and pmax/pmin of 0.4 mol% Y doped specimen which was sintered at 1375$^{\circ}C$ were 102∼3 (Ω$.$cm) and 102∼3 respectively. 4) Room temperature resistivity and pmax/pmin of 0.4 mol% Y and 0.04 at% Mn added specimen which was sintered at 1375$^{\circ}C$ were 102∼3 (Ω$.$cm) and 106∼7 respectively. 5) Grain growth was inhibited with addition of Y2O3 and enhanced in addition of Mn by 0.05 atm%.

  • PDF

Fabrication of FBAR (SMR) using Reflector (반사층을 이용한 FBAR(SMR)의 제조)

  • Lee, Jae-Bin;Kwak, Sang-Hyon;Kim, Hyeong-Joon;Park, Hee-Dae;Kim, Young-Sik
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1263-1269
    • /
    • 1999
  • An FBAR(Solidly Mounted Resonator) was fabricated using reflector layers which prohibit the penetration of bulk acoustic wave into substrate. The SMR consisted of top and bottom electrodes(Al films), a piezoelectric layer (ZnO film), reflector layers(W/$Si_2$ films) and Si substrate. The electrodes were deposited by dc sputtering. The piezoelectric layer and the reflector layers were deposited by rf magnetron sputtering. The control of crystallinity, microstructures and electric properties of each layer was essential for attaining the optimum FBAR characteristics. Under the best deposition conditions for FBAR devices, the ZnO films had highly c-axis preferred orientation(${\sigma}=2.17^{\circ}$), resistivity of $10^4\;{\omega}cm$, and surface roughness of 10.6 ${\AA}$. On the other hand, the surface roughness of W and $Si_2$ films was 16 ${\AA}$ and 33 ${\AA}$, respectively, and the resistivity of Al film was $5.1{\times}10^{-6}\;{\Omega}cm$. The SMR devices were fabricated by the conventional semiconductor processes. In the resonance conditions of the SMR, the series resonance frequency (fs) and the parallel resonance frequency(fp) were 1.244 GHz and 1.251 GHz, respectively and the quality factor(Q) was 1200.

  • PDF

Characteristics of Polycrystalline β-SiC Films Deposited by LPCVD with Different Doping Concentration

  • Noh, Sang-Soo;Lee, Eung-Ahn;Fu, Xiaoan;Li, Chen;Mehregany, Mehran
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.245-248
    • /
    • 2005
  • The physical and electrical properties of polycrystalline $\beta$-SiC were studied according to different nitrogen doping concentration. Nitrogen-doped SiC films were deposited by LPCVD(1ow pressure chemical vapor deposition) at $900^{\circ}C$ and 2 torr using $100\%\;H_2SiCl_2$ (35 sccm) and $5 \%\;C_2H_2$ in $H_2$(180 sccm) as the Si and C precursors, and $1\%\;NH_3$ in $H_2$(20-100 sccm) as the dopant source gas. The resistivity of SiC films decreased from $1.466{\Omega}{\cdot}cm$ with $NH_3$ of 20 sccm to $0.0358{\Omega}{\cdot}cm$ with 100 sccm. The surface roughness and crystalline structure of $\beta$-SiC did not depend upon the dopant concentration. The average surface roughness for each sample 19-21 nm and the average surface grain size is 165 nm. The peaks of SiC(111), SiC(220), SiC(311) and SiC(222) appeared in polycrystalline $\beta$-SiC films deposited on $Si/SiO_2$ substrate in XRD(X-ray diffraction) analysis. Resistance of nitrogen-doped SiC films decreased with increasing temperature. The variation of resistance ratio is much bigger in low doping, but the linearity of temperature dependent resistance variation is better in high doping. In case of SiC films deposited with 20 sccm and 100 sccm of $1\%\;NH_3$, the average of TCR(temperature coefficient of resistance) is -3456.1 ppm/$^{\circ}C$ and -1171.5 ppm/$^{\circ}C$, respectively.

Fabrication and Fault Test Results of Bi-2212/Cu-Ni Tubes for Superconducting Fault Current Limiting Elements (Bi-2212/Cu-Ni 튜브로 제작한 초전도 한류소자의 단락사고시험 결과)

  • Oh, S.Y.;Yim, S.W.;Yu, S.D.;Kim, H.R.;Hyun, O.B.
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.45-49
    • /
    • 2008
  • For the development of superconducting fault current limiters (SFCLs), fault current limiting elements were fabricated out of Bi-2212 bulk tubes and tested. The SFCL elements consisted of tube shaped Bi-2212 bulks and metal shunts for the stabilizers. Firstly, the Bi-2212 bulk tubes were processed based on a design of monofilar coils in order to acquire large resistance and high voltage rating. 300 mm-long Bi-2212 tubes were designed to have the current path of 410 cm in length with 24 turns and 41 mm in diameter. The processed monofilar coil, as designed, had 300 A $I_c$ at 77 K. The fabricated superconducting monofilar coils were affixed to Cu-Ni alloy as that of stabilizers. The Cu-Ni alloys were processed to have the same shape of the superconducting monofilar coils. The Cu-Ni coil had resistivity of 32 ${\mu}{\Omega}$-cm at 77 K and 37 ${\mu}{\Omega}$-cm at 300 K. The metal shunts were attached to the outside of the Bi-2212 monofilar coil by a soldering technique. After the terminals made of copper were attached to both ends of the superconductor-metal shunt composite, the gap between the turns and the surface of the elements was filled with an epoxy and a dense mesh made of FRP in order to enhance the mechanical strength. The completed SFCL elements went through fault tests, and we confirmed that the voltage rating of 143 $V_{rms}$ (E =0.35 $V_{rms}$/cm) could be accomplished.

  • PDF

A Study on the Contact Power by Coating Material of Spray in AT Feeding Method (AT급전방식에서 코팅재에 의한 접촉전력에 대한 연구)

  • Kim, Min-Seok;Kim, Min-Kyu;Park, Yong-Gul;Lee, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.85-92
    • /
    • 2011
  • Main characteristic in railroad is the guided movement of the wheel by the track through a metal-to-metal contact, conferring to the rail vehicle a single degree of freedom. There are defects such as head check, shelling, corrugation, squats etc in surface of the rail by interface between the wheel and rail. These defects bring about reducing the life-cycle of rails and track components and increasing noises. In case of bad conditions, it is possible to happen to full-scale accident such as derailment. Recently, the track capacity has been increased for increasing speed and operation efficiency. So, maintenance and indirect cost have been increased. Currently, a coating method of rail construction is proposed by using the ceramics in Korea. Rails are used as the earth in electrical railroad systems. Currently traction return current is flowed through wheels of trains. In case of rails coated, problems are caused in the contact power between wheel and coating material of spray. In this paper, electric model is presented in the AT feeding method. In case of rails coated, electric model is presented. Also, standard resistance of the ceramic is demonstrated by contact power between wheel and coating material of spray.

Preparation of Porous Gold for Sensor Applications (센서 응용을 위한 다공성 골드의 제조)

  • Kim, Young-Hun;Kim, He-Ro;Ko, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.32-37
    • /
    • 2008
  • For a development of U-safety system, liquid/gas-sensors that are easy to carry and install in any place are needed. Therefore, in this work, we prepared porous gold using a templating method with nanoporous alumina, and it was used as sensing materials and electrode. The resulting materials showed high purity macroporous structure with $200{\sim}300\;nm$ of window-pore and $4.8\;m^2/g$ of surface area. Because porous gold had good electric conductivity, convenience to measure the change of electric resistivity and good reproducibility, it could be used as potential sensing materials. As a proof-of-concept test, the detection test for mercury ion was carried out.

  • PDF