• Title/Summary/Keyword: Surface electric resistivity

Search Result 101, Processing Time 0.022 seconds

Inspection Method Validation of Grouting Effect on an Agricultural Reservoir Dam (농업용 저수지 제체에서의 그라우팅 주입효과 확인방법의 검증)

  • Kim, Hyeong-Sin;Moon, Seong-Woo;Leem, Kookmook;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.381-393
    • /
    • 2021
  • Physical, mechanical, hydraulic, and geophysical tests were applied to validate methods of inspecting the effectiveness of grouting on an agricultural reservoir dam. Data obtained from series of in situ and laboratory tests considered four stages: before grouting; during grouting; immediately after grouting; and after aging the grouting for 28 days. The results of SPT and triaxial tests, including the unit weight, compressive strength, friction angle, cohesion, and N-value, indicated the extent of ground improvement with respect to grout injection. However, they sometimes contained errors caused by ground heterogeneity. Hydraulic conductivity obtained from in situ variable head permeability testing is most suitable for identifying the effectiveness of grouting because the impermeability of the ground increased immediately after grouting. Electric resistivity surveying is useful for finding a saturated zone and a seepage pathway, and multichannel analysis of surface waves (MASW) is suitable for analyzing the effectiveness of grouting, as elastic velocity increases distinctly after grouting injection. MASW also allows calculation from the P- and S- wave velocities of dynamic properties (e.g., dynamic elastic modulus and dynamic Poisson's ratio), which can be used in the seismic design of dam structures.

Deposition of Micropattern using The Laser Direct Writing Method with a polymer coating layer (폴리머 코팅층 레이저 직접묘화법을 이용한 미세패턴증착)

  • Lee, Bong-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.6980-6985
    • /
    • 2014
  • A micro-conductive pattern was fabricated on an insulating substrate ($SiO_2$) surface using a laser direct writing method. In the LIFT process, when the laser beam irradiates a thin metal film, the photon energy is absorbed by the film and converted to thermal energy, and the thermal decomposition reaction produced by the resulting heat conduction forms a deposit on the substrate. The resistivity of the micro-electrodes deposited through LIFT process with and without polymer coating was measured. The results showed that the electric conductivity of the micro-pattern and micro-structure can be increased approximatly two times when the deposited micropattern is fabricated through a LIFT process with a polymer coating, compared to the case without a polymer coating.

Contribution of Geophysics to the Study of Barite Mineralization in the Paleozoic Formations of Asdaf Tinejdad (Eastern Anti Atlas Morocco)

  • Ibrahim, Dakir;Ahmed, Benamara;Habiba, Aassoumi;Abdessalam, Ouallali;Youssef, Ait Bahammou
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.259-269
    • /
    • 2020
  • The use of the geophysical method in mining prospecting has been studied in the Asdaf region (South-East of Morocco). The objective of the study is to examine the aptitude of the electrical technique, in this case induced polarization (IP) and electric tomography, combined with the electromagnetic method (VLF), in the exploration of barite . The result obtained by the pseudo-sections of electrical tomography and that of KH filtration highlighted anomalies of resistant contact (greater than 400Ω.m) and of high charge chargeability (5mV / V). These contacts are hosted in less resistant Devonian age shale and sandstone. The resistivity response obtained at their level is characteristic of the venous structures associated with barite mineralization. The direction of the mineralized veins is parallel to the direction of the fractured zones (NE-SW), which indicates that the mineralization in place is due to the tectonic movements of the Hercynian orogeny (from Devonian to Permian). These veins are aligned with the locations of abandoned mine shafts and with surface mining areas. Geophysical technique therefore seems to play a key role in barite mining exploration.

Annealing Effects on the Properties of Bi-doped ZnO Thin Film (Bi-doped ZnO 박막의 열처리에 따른 특성)

  • Shin, Johngeon;Hwang, Injoo;Cho, Shinho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.1
    • /
    • pp.13-19
    • /
    • 2020
  • Annealing effects on the properties of Bi-doped ZnO thin films were investigated. Bi- doped ZnO thin films were deposited on quartzs substrates at 300℃ by using radio-frequency magnetron sputtering system. Post heat treatments at 600, 700, and 800℃ were performed to evaluate the effect of annealing temperatures on the structural, optical, and electrical properties of Bi-doped ZnO thin films. FE-SEM images showed the dramatic surface morphology changes by rearrangement of elements at high heat treatment temperature of 800℃. X-ray diffraction analysis indicated that the peaks of the Bi-doped ZnO thin films were same as the peaks of the (002) planes of ZnO peak-positioned at 2θ=34.0° and peak intensities and FWHMs were improved as the annealing temperatures increased. The optical transmittance was improved with increasing annealing temperatures and was over 80% in the wavelength region between 435 and 1100 nm at the annealing temperature of 700 and 800℃. With increasing annealing temperature, the electron concentrations and electron mobilities were increased. On the other hand, electric resistivity of the films were decreased with increasing annealing temperatures. These results showed that the heat treatment temperature is an important parameter to improve the structural, optical, and electrical properties of Bi-doped ZnO thin films.

Performance of High-Flowable Retaining Wall Material Using Ground Granulated Blast-Furnace Slag and Steel Fiber (고로슬래그미분말 및 강섬유를 적용한 고유동 흙막이 벽체 재료의 성능 평가)

  • Kim, Donggyou;Yu, Kangmin;Lee, Seungtae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.11
    • /
    • pp.5-11
    • /
    • 2022
  • The objective of this study is to evaluate the mechanical properties of high-flowable retaining wall material (RWM) incorporated with ground granulated blast-furnace slag (SG) and steel fiber (SF) based on a comparison with those of ordinary portland cement (OPC). To produce the specimens of RWM, some chemical agents such as superplasticizer (SP), air-entrained agent (AEA) and viscosity modifying agent (VMA) are added in the fresh RWM. The compressive, split tensile and flexural strength measurements were performed on the hardened RWM specimens. Additionally, surface electric resistivity and absorption tests according to ASTM standards were carried out at predetermined periods after water curing. It was found that the mechanical properties of slag cement concrete (SGC) RWM mix are better than those ordinary portland cement concrete (OPC) RWM mix. The effect of SF is remarkable to improve the mechanical properties of RWM mixes. It is noted that the usage of SG shows a beneficial effect to resist water penetration as well as long-term strength development of RWM mixes.

Mechanical Properties and Frost Resistance of Concrete with Steel and Nylon Fibers (강섬유 및 나일론섬유를 적용한 콘크리트의 역학적 성능 및 내동해성 평가)

  • Dong-Gyou, Kim;Seung-Tae, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.386-394
    • /
    • 2022
  • In this study, the mechanical properties and frost resistance of concrete with steel and nylon fibers were experimentally investigated. Both of OPC concrete with 100 % ordinary portland cement and SGC concrete replaced with 50 % GGBFS were manufactured to evaluate effects of fibers to the performance of concrete. Compressive and split tensile strength, ultrasonic pulse velocity and surface electric resistivity measurements of concrete were carried out at a predetermined interval. In addition, the freezing & thawing resistance of concrete in accordance with ASTM C666 standard was also examined. As a result, it is seemed that the effect of fibers was remarkable to improve the mechanical properties and frost resistance of concrete, especially for the concrete incorporating steel fiber.

Effect of Steel Fiber Addition on the Mechanical Properties and Durability of High-Flowable Retaining Wall Material (고유동 흙막이 벽체 재료의 역학적 성능 및 내구성에 대한 강섬유 혼입률의 영향)

  • Donggyu Kim;Seungtae Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.6
    • /
    • pp.13-20
    • /
    • 2023
  • This paper is aimed to evaluate the mechanical properties and durability of high-flowable retaining wall material (RWM) with different levels of steel fiber (SF) content. To produce the specimens of RWM, some chemical agents such as superplasticizer (SP), air-entrained agent (AEA) and viscosity modifying agent (VMA) were added in the fresh RWM. The compressive and split tensile strength measurements were performed on the hardened RWM specimens at the predetermined periods. Additionally, surface electric resistivity and absorption tests according to ASTM standards were carried out to examine mechanical properties of RWM mixes. The durable performances such as chloride ions penetrability and freezing-thawing resistance of RWM mixes were experimentally investigated. As resutls, it was found that the performance of RWM mix with SF were much better than that without SF, especially at the 2% addition of SF. Thus, it is noted that the proper addition of SF in the RWM mix may have a beneficial effect to improve mechanical properties and durability of RWM mixes.

Geophysical and Geochemical Studies for the Saline Water Intrusion under the Paddy Field in Kyoung-gi area, Korea (경기 지역 농경지 하부로의 해수 침투에 관한 지구물리 및 지구화학적 연구)

  • Lee Sang-Ho;Kim Kyoung-Woong;Lee Sang-Kyu
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.2
    • /
    • pp.96-103
    • /
    • 1999
  • Most of saline water inousions have been diagnosed by geophysical or geochemical approach independently. The objective of this study is to provide the effective method to detect the saline water intrusion on the ground water in the vicinity of seashore using these two methods. Schulumberger sounding, frequency domain electromagnetic sounding and geochemical analysis of ground water were carried out to explore saline water intrusion. Schulumberger sounding was implemented in dry surface condition before irrigation water was introduced into the field, while electromagnetic sounding was carried out in wet ground condition after the irrigation. The purpose of duplicated measurements on the equivalent spot at different times was to investigate the variation of anomaly zone depending on the amount of ground water. It was possible to discriminate the anomalous zone due to high water saturation from the low electric resistivity zone by high salt concentrations through this way. For the verification of the geophysical result, the ground water samples in the study area were collected and analysed at the 23 points near the measuring spots. The groundwater at the spot nearest to the sea water intrusion identified by geophysical method indicates higher salinity than the standard limit concentration for agricultural irrigation water (250 mg/1). Isotope analysis of $D({^2}H)$ vs. is ${^18}O$ and PCA analysis were used to discriminate the anthropogenic pollution from those of high salinity from sea water intrusion.

  • PDF

Case Study on the Investigation of Leachate Contamination from Waste Landfill Using Electromagnetic and Magnetic Methods (쓰레기 매립장 주변의 침출수 오염조사 사례: 전자탐사 및 자력탐사의 적용)

  • Son Jeong-Sul;Kim Jung-Ho;Yi Myeong-Jong;Ko Kyung-Seok
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.137-144
    • /
    • 2005
  • In this study, we offered the results of geophysical and geochemical survey on the municipal waste disposal area to delineate the size and extent of leachate contamination. Preliminary to intensive geochemical investigation, we performed two geophysical methods to characterize the survey area. Electromagnetic (EM) and magnetic method were used far site investigation. From the EM method, we can get the information of soil conductivity directly related to the leachate of the contaminations and from magnetic anomalies we can find the boundary of landfill which is not identified on the surface due to soil capping. The results of geophysical survey were well matched to those of geochemical method carried out inside and near the landfill. Electric conductivity (EC) of the groundwater sampled from low resistivity anomaly region of EM result was higher than background value and the border estimated from the magnetic survey showed good agreement with that estimated from the soil gas detection survey.

Fabrication and Characteristics of a Varactor Diode for UHF TV Tuner Operated within Low Tuning Voltage (저전압 UHF TV 튜너용 바렉터 다이오드의 제작 및 특성)

  • Kim, Hyun-Sik;Moon, Young-Soon;Son, Won-Ho;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.185-191
    • /
    • 2014
  • The width of depletion region in a varactor diode can be modulated by varying a reverse bias voltage. Thus, the preferred characteristics of depletion capacitance can obtained by the change in the width of depletion region so that it can select only the desirable frequencies. In this paper, the TV tuner varactor diode fabricated by hyper-abrupt profile control technique is presented. This diode can be operated within 3.3 V of driving voltage with capability of UHF band tuning. To form the hyperabrupt profile, firstly, p+ high concentration shallow junction with $0.2{\mu}m$ of junction depth and $1E+20ions/cm^3$ of surface concentration was formed using $BF_2$ implantation source. Simulation results optimized important factors such as epitaxial thickness and dose quality, diffusion time of n+ layer. To form steep hyper-abrupt profile, Formed n+ profile implanted the $PH_3$ source at Si(100) n-type epitaxial layer that has resistivity of $1.4{\Omega}cm$ and thickness of $2.4{\mu}m$ using p+ high concentration Shallow junction. Aluminum containing to 1% of Si was used as a electrode metal. Area of electrode was $30,200{\mu}m^2$. The C-V and Q-V electric characteristics were investigated by using impedance Analyzer (HP4291B). By controlling of concentration profile by n+ dosage at p+ high concentration shallow junction, the device with maximum $L_F$ at -1.5 V and 21.5~3.47 pF at 0.3~3.3 V was fabricated. We got the appropriate device in driving voltage 3.3 V having hyper-abrupt junction that profile order (m factor) is about -3/2. The deviation of capacitance by hyper-abrupt junction with C0.3 V of initial capacitance is due to the deviation of thermal process, ion implantation and diffusion. The deviation of initial capacitance at 0.3 V can be reduced by control of thermal process tolerance using RTP on wafer.