DOI QR코드

DOI QR Code

Mechanical Properties and Frost Resistance of Concrete with Steel and Nylon Fibers

강섬유 및 나일론섬유를 적용한 콘크리트의 역학적 성능 및 내동해성 평가

  • Dong-Gyou, Kim (Korea Institute of Civil engineering and Building Technology) ;
  • Seung-Tae, Lee (Dept. of Civil Engineering, Kunsan National University)
  • 김동규 (한국건설기술연구원 지반연구본부) ;
  • 이승태 (군산대학교 토목공학과)
  • Received : 2022.10.24
  • Accepted : 2022.11.09
  • Published : 2022.12.30

Abstract

In this study, the mechanical properties and frost resistance of concrete with steel and nylon fibers were experimentally investigated. Both of OPC concrete with 100 % ordinary portland cement and SGC concrete replaced with 50 % GGBFS were manufactured to evaluate effects of fibers to the performance of concrete. Compressive and split tensile strength, ultrasonic pulse velocity and surface electric resistivity measurements of concrete were carried out at a predetermined interval. In addition, the freezing & thawing resistance of concrete in accordance with ASTM C666 standard was also examined. As a result, it is seemed that the effect of fibers was remarkable to improve the mechanical properties and frost resistance of concrete, especially for the concrete incorporating steel fiber.

본 연구에서는 강섬유 및 나일론섬유를 적용한 섬유보강 콘크리트의 역학적 성능 및 내동해성을 실험적으로 평가하였다. 콘크리트의 역학적 성능 및 내동해성에 대한 섬유보강재의 효과를 평가하기 위하여 100 % 1종 보통포틀랜드시멘트(OPC) 콘크리트 및 50 % 대체 고로슬래그미분말(SGC) 콘크리트를 제조하였으며, 소정의 재령에서 압축 및 인장강도, 초음파펄스속도, 표면전기저항을 각각 측정하였으며, ASTM C666에 준하여 콘크리트의 상대동탄성계수 및 질량비를 측정하여 동결융해 저항성을 평가하였다. 실험결과에 의하면, 섬유보강재는 콘크리트의 역학적 성능을 효과적으로 개선시켰으며, 이러한 경향은 강섬유 적용 SGC 콘크리트에서 두드러지게 나타났다.

Keywords

Acknowledgement

본 논문은 한국건설기술연구원 주요사업 "인공지능을 활용한 대심도 지하 대공간의 스마트 복합 솔루션 개발" 연구과제에서 연구비를 지원받아 수행된 결과입니다. 이에 감사드립니다.

References

  1. Attari, A., McNally, C., Richardson, M.G. (2016). A combined SEM - calorimetric approach for assessing hydration and porosity development in GGBFS concrete, Cement and Concrete Composites, 68, 46-56.
  2. Cao, Q., Gao, Q., Gao, R., Jia, J. (2018). Chloride penetration resistance and frost resistance of fiber reinforced expansive self-consolidating concrete, Construction and Building Materials 158, 719-727.
  3. Feo, L., Ascione, F., Penna, R., Lau, D., Lamberti, M. (2020). An experimental investigation on freezing and thawing durability of high performance fiber reinforced concrete (HPFRC), Composites and Structures, 234, 111673.
  4. Gastaldini, A.L.G., Isaia, G.C., Hoppe, T.F., Missau, F., Saciloto, A.P. (2009). Influence of the use of rice husk ash on the electrical resistivity of concrete: A technical and economic feasibility study, Construction and Building Materials, 23(11), 3411-3419. https://doi.org/10.1016/j.conbuildmat.2009.06.039
  5. Huang, W.H. (2001). Improving the properties of cement-fly ash grout using fiber and superplasticizer, Cement and Concrete Research, 31(7), 1033-1041. https://doi.org/10.1016/S0008-8846(01)00527-0
  6. Karahan, O., Atis, C.D. (2011). The durability properties of polyproylene fiber reinforced fly ash concrete, Materials and Design, 32(2), 1044-1049.
  7. Kim, D.G. Yu, K.M., Lee, S.T. (2022). Performance of high-flowable retaining wall material using ground granulated blast-furnace slag and steel fiber, Journal of the Korean Geo-Environmental Society, 23(11), 5-11 [in Korean].
  8. Kim, S.D., Moon, D.Y. (2013). Effect of steel fiber distribution on steel fiber-reinforced concrete on surface electrical resistivity, Journal of the Korea Institute for Structural Maintenance and Inspection, 17(1), 106-113 [In Korean]. https://doi.org/10.11112/jksmi.2013.17.1.106
  9. Lee, S.T. (2019). Effect of nylon fiber addition on the performance of recycled aggregate concrete, Applied Science, 9(4), 767.
  10. Miao, C., Mu, R., Tian, Q., Sun, W. (2002). Effect of sulfate solution on the frost resistance of concrete with and without steel fiber reinforcement, Cement and Concrete Research, 32(1), 31-34. https://doi.org/10.1016/S0008-8846(01)00624-X
  11. Nik, A.S., Omran, O.L. (2013). Estimation of compressive strength of self-compacted concrete with fibers consisting nano-SiO2 using ultrasonic pulse velocity, Construction and Building Materials 44, 654-662.
  12. Ozbay, E., Karahan, O., Lachemi, M., Hossain, K.M.A., Atis, C.D. (2013), Dual effectiveness of freezing-thawing and sulfate attack on high-volume slag-incorporated ECC, Composites Part B: Engineering, 45(1), 1384-1390. https://doi.org/10.1016/j.compositesb.2012.07.038
  13. Park, J.S., Ahan, K.H., You, Y.J., Lee, J.S. (2022). Evaluating the freeze-thaw damage of concrete with respect to water to cement ratio using surface rebound value, Journal of Recycled Construction Resources Institute, 10(2), 143-151 [In Korean].
  14. Ramezanianpour, A.A., Pilvar, A., Mahdikhani, M., Moodi, F. (2011). Practical evaluation of relationship between concrete resistivity, water penetration, rapid chloride penetration and compressive strength, Construction and Building Materials, 25(5), 2472-2479. https://doi.org/10.1016/j.conbuildmat.2010.11.069
  15. Soylev, T.A., Ozturan, T. (2014). Durability, physical and mechanical properties of fiber reinforced concretes at low-volume fraction, Construction and Building Materials, 73, 67-75. https://doi.org/10.1016/j.conbuildmat.2014.09.058
  16. Wang, J., Niu, D. (2016). Influence of freeze-thaw cycles and sulfate corrosion resistance on shotcrete with and without steel fiber, Construction and Building Materials 122, 628-636. https://doi.org/10.1016/j.conbuildmat.2016.06.100