• Title/Summary/Keyword: Surface State

Search Result 3,662, Processing Time 0.032 seconds

Conservation and Scientific Analysis of Human Bone Excavated in Sabi Period of Baekje from Eungpyeong-ri, Buyeo (부여 응평리 출토 백제 사비기 인골 보존처리 및 과학적 분석)

  • KIM, Mijeong;LEE, Yunseop;CHO, Eunmin;PARK, Sujin;MOON, Minseong
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.1
    • /
    • pp.305-321
    • /
    • 2022
  • The stone chamber tomb in Eungpyeong-ri, Buyeo, is a joint tomb that contains the bodies of two individuals. This paper investigates the relationship between the buried persons and the characteristics of the stone chamber tomb. Based on the geographical location, relics, and the excavated human bones, it was determined that the tomb was built during the Sabi Period of the Baekje Dynasty and that the buried individuals were most probably residents of high stature or government officials. To study the excavated bones, the remains were carefully collected and conservation was carried out. Before collecting samples from the human bones for the analytical research, the results of near-infrared analysis were used to collect the samples for the isotope analysis and DNA analysis. The most important issue when handling the excavation site was the reinforcing agent and the concentration of the agent used. In situations like this, Paraloid B-72 is the most suitable agent. When the shape of human bones was difficult to distinguish from the soil, conservation was performed using X-ray and CT imaging data. The same chemical used for the reinforcement of the site was used to complete a minimum level of conservation to the surface areas where the conservation treatment of removing foreign substances, the reinforcement areas, and bonded areas were carried out. The collagen yield from the sample obtained at selected position was 3.8% to 6.1%. The results of analyzing the stable isotopes of carbon and nitrogen found in the extracted collagen showed that the stable isotope ratios came out to δ13C -18.3‰±0.1‰, -19.0‰±0.1‰ for EBW and δ15N 10.7‰±0.5‰, 10.6‰±0.1‰ for EBE. It is believed the two individuals consumed small amounts of minor cereals, mainly from C3 plants, and protein was obtained from eating terrestrial animals. What's more, the deviations in data obtained from the two individuals were so small that it could be inferred that the individuals ate similar foods. Considering the preservation state of the sample, amplifying DNA for the DNA analysis would have been very difficult since the amount of surviving DNA was so deficient. For DNA analysis, it is anticipated that the results could be derived by applying improved extraction methods that will be developed in the future. In this research, any association between scientific analysis(DNA and stable isotope ratio) and near-infrared spectroscopy was difficult to establish. Further research is needed on the utilization of near-infrared analysis for gathering samples from human bones.

A Relative Study of 3D Digital Record Results on Buried Cultural Properties (매장문화재 자료에 대한 3D 디지털 기록 결과 비교연구)

  • KIM, Soohyun;LEE, Seungyeon;LEE, Jeongwon;AHN, Hyoungki
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.1
    • /
    • pp.175-198
    • /
    • 2022
  • With the development of technology, the methods of digitally converting various forms of analog information have become common. As a result, the concept of recording, building, and reproducing data in a virtual space, such as digital heritage and digital reconstruction, has been actively used in the preservation and research of various cultural heritages. However, there are few existing research results that suggest optimal scanners for small and medium-sized relics. In addition, scanner prices are not cheap for researchers to use, so there are not many related studies. The 3D scanner specifications have a great influence on the quality of the 3D model. In particular, since the state of light reflected on the surface of the object varies depending on the type of light source used in the scanner, using a scanner suitable for the characteristics of the object is the way to increase the efficiency of the work. Therefore, this paper conducted a study on nine small and medium-sized buried cultural properties of various materials, including earthenware and porcelain, by period, to examine the differences in quality of the four types of 3D scanners. As a result of the study, optical scanners and small and medium-sized object scanners were the most suitable digital records of the small and medium-sized relics. Optical scanners are excellent in both mesh and texture but have the disadvantage of being very expensive and not portable. The handheld method had the advantage of excellent portability and speed. When considering the results compared to the price, the small and medium-sized object scanner was the best. It was the photo room measurement that was able to obtain the 3D model at the lowest cost. 3D scanning technology can be largely used to produce digital drawings of relics, restore and duplicate cultural properties, and build databases. This study is meaningful in that it contributed to the use of scanners most suitable for buried cultural properties by material and period for the active use of 3D scanning technology in cultural heritage.

Geophysical Evidence Indicating the Presence of Gas Hydrates in a Mud Volcano(MV420) in the Canadian Beaufort Sea (캐나다 보퍼트해 진흙화산(MV420) 내 가스하이드레이트 부존을 지시하는 지구물리학적 증거)

  • Yeonjin Choi;Young-Gyun Kim;Seung-Goo Kang;Young Keun Jin;Jong Kuk Hong;Wookeen Chung;Sung-Ryul Shin
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.1
    • /
    • pp.18-30
    • /
    • 2023
  • Submarine mud volcanos are topographic features that resemble volcanoes, and are formed due to eruptions of fluidized or gasified sediment material. They have gained attention as a source of subsurface heat, sediment, or hydrocarbons supplied to the surface. In the continental slope of the Canadian Beaufort Sea, mud volcano exists at various water depths. The MV420, is an active mud volcano erupting at a water depth of 420 meters, and it has been the subject of extensive study. The Korea Polar Research Institute(KOPRI) collected high-resolution seismic data and heat flow data around the caldera of the mud volcano. By analyzing the multi-channel seismic data, we confirmed the reverse-polarity reflector assumed by a gas hydrate-related bottom simulating reflector(BSR). To further elucidate the relationship between the BSR and gas hydrates, as well as the thermal structure of the mud volcano, a numerical geothermal model was developed based on the steady-state heat equation. Using this model, we estimated the base of the gas hydrate stability zone and found that the BSR depth estimated by multi-channel seismic data and the bottom of the gas hydrate stability zone were in good agreement., This suggests the presence of gas hydrates, and it was determined that the depth of the gas hydrate was likely up to 50 m, depending on the distance from the mud conduit. Thus, this depth estimate slightly differs from previous studies.

An Installation and Model Assessment of the UM, U.K. Earth System Model, in a Linux Cluster (U.K. 지구시스템모델 UM의 리눅스 클러스터 설치와 성능 평가)

  • Daeok Youn;Hyunggyu Song;Sungsu Park
    • Journal of the Korean earth science society
    • /
    • v.43 no.6
    • /
    • pp.691-711
    • /
    • 2022
  • The state-of-the-art Earth system model as a virtual Earth is required for studies of current and future climate change or climate crises. This complex numerical model can account for almost all human activities and natural phenomena affecting the atmosphere of Earth. The Unified Model (UM) from the United Kingdom Meteorological Office (UK Met Office) is among the best Earth system models as a scientific tool for studying the atmosphere. However, owing to the expansive numerical integration cost and substantial output size required to maintain the UM, individual research groups have had to rely only on supercomputers. The limitations of computer resources, especially the computer environment being blocked from outside network connections, reduce the efficiency and effectiveness of conducting research using the model, as well as improving the component codes. Therefore, this study has presented detailed guidance for installing a new version of the UM on high-performance parallel computers (Linux clusters) owned by individual researchers, which would help researchers to easily work with the UM. The numerical integration performance of the UM on Linux clusters was also evaluated for two different model resolutions, namely N96L85 (1.875° ×1.25° with 85 vertical levels up to 85 km) and N48L70 (3.75° ×2.5° with 70 vertical levels up to 80 km). The one-month integration times using 256 cores for the AMIP and CMIP simulations of N96L85 resolution were 169 and 205 min, respectively. The one-month integration time for an N48L70 AMIP run using 252 cores was 33 min. Simulated results on 2-m surface temperature and precipitation intensity were compared with ERA5 re-analysis data. The spatial distributions of the simulated results were qualitatively compared to those of ERA5 in terms of spatial distribution, despite the quantitative differences caused by different resolutions and atmosphere-ocean coupling. In conclusion, this study has confirmed that UM can be successfully installed and used in high-performance Linux clusters.

Manufacturing Method and Characteristics of the Dongrok(copper chloride) pigments (동록(염화동) 안료의 제조방법 및 특성에 관한 연구)

  • KANG Yeongseok;PARK Juhyun;MUN Seongwoo;HWANG Gahyun;KIM Myoungnam;LEE Sunmyung
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.2
    • /
    • pp.148-169
    • /
    • 2023
  • Hayeob pigment is known as one of the traditional dark green pigments, but the color, raw material, and manufacturing method have not been clearly identified. However, comparing the analysis results of the particle shape and constituent minerals of Hayeob pigments revealed through pigment analysis studies of colored cultural properties such as Dancheong, Gwaebul, and paintings, Hayeob pigments appear to be the same as Dongrok pigments produced by salt corrosion. Therefore, in order to restore Hayeob pigment, the manufacturing method of Dongrok pigment was studied based on the records of old literature. The Dongrok pigment manufacturing method confirmed in the old literature records is a natural corrosion method in which copper powder and a caustic are mixed and then left in a humid condition to corrode. Based on this, artificial corrosion using a corrosion tester was adopted to corrode the copper powder more efficiently, and an appropriate mixing ratio was selected by analyzing the state of corrosion products according to the mixing ratio of the caustic agent. In addition, the manufacturing method of Dongrok pigment was established by adding a salt removal process to remove residual caustic agents and a purification process to increase chroma during pigment coloring. The prepared Dongrok pigments have a bluish green or green color, show an elliptical particle shape and a form in which small particles are aggregated, and a porous surface is observed. The main constituent elements are copper(Cu) and chlorine(Cl), and the main constituent mineral is identified as atacamite [Cu2Cl(OH)3]. As a result of an accelerated weathering test to evaluate the stability of the prepared Dongrok pigments, it was found that the greenness partially decreased and the yellowness significantly increased as deterioration progressed. Before deterioration, the Dongrok pigments had lower yellowness compared to the Hayeob pigments of the old Dancheong, but after deterioration, yellowness increased significantly, and it was found to have a similar chromaticity range as Dancheong's Hayeob pigments. As a result, the prepared Dongrok pigments were confirmed to be similar to Dancheong's Hayeob pigments in terms of color as well as particle shape and constituent minerals.

The Effects of Acute Hemorrhage on Cardiopulmonary Dynamics in the Hypothermic Dog (급성사혈이 저온견의 심폐동태에 미치는 영향)

  • Lee, Jae Woon
    • Journal of Chest Surgery
    • /
    • v.2 no.1
    • /
    • pp.85-104
    • /
    • 1969
  • This experiment was carried out to study the effect of rapid hemorrhage on cardiopulmonary hemodynamics of the cooled dogs. Hypothermia was induced by means of body surface cooling with ice water. Lowest esophageal temperatures ranged from 24 to 26 degree. Dogs were bled via the femoral artery into a reservoir in amount of the equivalent blood volume of 3% of body weight of the dogs. Some dogs were reinfused with the same amount of blood which they lost and others infused with 5% dextrose solution. Fourty adult mongrel dogs were divided into three groups: group I[15 dogs]; dogs were bled in normothermic state. Five dogs had no further treatment, but five dogs were reinfused with blood and five infused with 5% dextrose solution 30 minutes after bleeding. GroupII[10 dogs]; dogs were bled as group I after having been cooled. Five dogs were reinfused with blood as group I. Group III[15 dogs]; dogs were first bled and then cooled. Reinfusion procedures were the same as in group l Results were as follow: 1. The heart rate showed a slight decrease after bleeding in group I and then increased over the control level after 60 minutes. After reinfusion and infusion, the heart rate was also increased gradually and after three hours almost returned to the control level. In group II and groupIll, the heart rate decreased remarkably and after reinfusion showed a light increase but after infusion tended to decrease cotinually. 2. The stroke volume showed remarkable decrease after bleeding in group I., and recovered to control level after reinfusion and infusion,and then gradually decreased again. In group III, the stroke volume showed no remarkable change after hypothermia, and tended to decrease after reinfusion. In group III, the stroke volume decreased remarkably after bleeding and hypothermia,and clearly increased after reinfusion and infusion and then returned to control level. 3. Femoral mean pressure declined very rapidly and significantly right after bleeding and showed a remarkable prompt rise after reinfusion and infusion in group I [67% recovery]. On the other hand, it declined remarkably after hypothermia and bleeding and showed a slight rise after reinfusion and infusion in group II[46% recovery] and III [41% recovery]. 4. Venous pressure declined slightly after bleeding and tended to return to the control level after reinfusion and infusion,in group I. In group II, it did not change significantly during hypothermia but showed a slight decline after bleeding and returned toward control level after reinfusion. In group III, it declined slightly after bleeding and showed no significant change after hypothermia and rose over the control level after reinfusion and infusion. 5. Right ventricular systolic pressure decreased markedly after bleeding and then increased progressively after 30 minutes. It increased after reinfusion and infusion as well, approaching the control level in group I. In group II, it showed no significant change during hypothermia, but decreased remarkably after bleeding and then returned to near control level after reinfusion. In group III, it was decreased markedly after bleeding but did not change significantly during hypothermia and showed a slight increase after reinfusion. 6. The respiratory rate increased gradually after bleeding and decreased gradually after reinfusion but did not return to the control level, whereas it decreased near to the control level after infusion,and tended to increase in group I. In group II, it decreased significantly after hypothermia and bleeding but returned near to the control level after reinfusion. In group III, it showed a remarkable decrease after hypothermia and increased slightly after reinfusion and infusion but did not returned to the control level. In group I, the tidal volume decreased slightly after hemorrhage, and increased gradually to near the control level after 3 hours following reinfusion.

  • PDF

Natural Monument Cretaceous Stromatolite at the Daegu Catholic University, Gyeongsan: Occurrences, Natural Heritage Values, and Plan for Preservation and Utilization (천연기념물 경산 대구가톨릭대학교 백악기 스트로마톨라이트: 산상, 자연유산적 가치 및 보존·활용 방안)

  • KONG Dal-Yong;LEE Seong-Joo
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.3
    • /
    • pp.214-232
    • /
    • 2023
  • Stromatolite at the Daegu Catholic University, Gyeongsan was designated as a natural monument in December 2009 because it was very excellent in terms of rarity, accessibility, preservation and scale. From the time of designation, the necessity of confirming the lateral extension of the stromatolite beds with the excavation of the surrounding area, and preparing a preservation plan was raised. Accordingly, the Cultural Heritage Administration conducted an investigation of the scale, production pattern, and weathering state of stromatolites with an excavation from April to December 2022, and based on this, suggested natural heritage values and conservation and use plans. The excavation was carried out in a 1,186m2 area surrounding the exposed hemispherical stromatolite (approximately 30m2). Stromatolites are continuously distributed over the entire excavation area, and hemispherical stromatolites predominate in the eastern region, and the distribution and size of hemispherical domes tend to decrease toward the west. These characteristics are interpreted as a result of long-term growth in large-scale lakes, where stratiform or small columnar domes continued to grow and connect with each other, finally forming large domes. Consequently, large and small domes were distributed on the bedding plane in clusters like coral reefs. The growth of plants and lichens, as well as small-scale faults and joints developed on the stromatolite bedding surface, is the main cause of accelerated weathering. However, preservation treatment with chemicals as with dinosaur footprints or dinosaur egg fossil sites is not suitable due to the characteristics of stromatolites, and preservation with the installation of closed protection facilities should be considered. This excavation confirmed that the distribution, size and value of stromatolites are much larger and higher than at the time of designation as a natural monument. Therefore, additional excavation of areas by experts that could not be excavated due to the discovery of buried cultural properties (stone chamber tombs) and reexamination of the expansion designation of natural monuments are required.

Interpretation of Microscale Behaviors and Precision Measurement Monitoring for the Five-story and Seven-story Stone Pagodas from Cheongnyangsaji Temple Site in Gongju, Korea (공주 청량사지 오층석탑 및 칠층석탑의 정밀 계측모니터링과 미세거동 해석)

  • LEE Jeongeun;PARK Seok Tae;LEE Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.132-158
    • /
    • 2023
  • The five-story and seven-story stone pagodas at Cheongnyangsaji temple site in Gongju are located under the Sambulbong peak of Gyeryongsan mountain, and are known to have been built of the middle in Goryeo dynasty. As the two pagodas in which two types of Baekje stone pagoda coexist in one era, their historical and academic value are recognized. The seven-story pagoda was overturned by robbery in 1944, and as a result, the five-story pagoda was tilted. Although the two pagodas were restored in 1961, structural instability was continuously raised. In this study, measurement data accumulated from May 2021 to March 2022, and seasonal characteristics were reviewed, and the micro behavior of pagodas were analyzed according to temperature and precipitation during the same period. As a result, the micro thermoelastic behavior was repeated according to the daily temperature change in all sensors, and both the slope and the displacement showed microscale behavior. In the inclinometer, moisture containing the surface and inside of the stones repeated expansion and contraction due to temperature change, showing the micro movements. In particular, the upper part of the five-story pagoda moved up to 3.89° to the northwest, and the seven-story pagoda tilted up to 0.078° to the northeast. The maximum displacements were recorded as 0.127 and 0.149 mm in the five-story and the seven-story pagoda, respectively. These values tended to return to the original position at the end of the measurement, but did not recover completely, indicating a state requiring precise monitoring. The result obtained through the study can be used as basic data for the stable conservation of the two stone pagodas. Based on the behavioral characteristics considering various environmental factors should be analyzed, and the preventive conservation through the maintenance of measurement system built this time should be continued.

Long-term Predictability for El Nino/La Nina using PNU/CME CGCM (PNU/CME CGCM을 이용한 엘니뇨/라니냐 장기 예측성 연구)

  • Jeong, Hye-In;Ahn, Joong-Bae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.170-177
    • /
    • 2007
  • In this study, the long-term predictability of El Nino and La Nina events of Pusan National University Coupled General Circulation Model(PNU/CME CGCM) developed from a Research and Development Grant funded by Korea Meteorology Administration(KMA) was examined in terms of the correlation coefficients of the sea surface temperature between the model and observation and skill scores at the tropical Pacific. For the purpose, long-term global climate was hindcasted using PNU/CME CGCM for 12 months starting from April, July, October and January(APR RUN, JUL RUN, OCT RUN and JAN RUN, respectively) of each and every years between 1979 and 2004. Each 12-month hindcast consisted of 5 ensemble members. Relatively high correlation was maintained throughout the 12-month lead hindcasts at the equatorial Pacific for the four RUNs starting at different months. It is found that the predictability of our CGCM in forecasting equatorial SST anomalies is more pronounced within 6-month of lead time, in particular. For the assessment of model capability in predicting El Nino and La Nina, various skill scores such as Hit rates and False Alarm rate are calculated. According to the results, PNU/CME CGCM has a good predictability in forecasting warm and cold events, in spite of relatively poor capability in predicting normal state of equatorial Pacific. The predictability of our CGCM was also compared with those of other CGCMs participating DEMETER project. The comparative analysis also illustrated that our CGCM has reasonable long-term predictability comparable to the DEMETER participating CGCMs. As a conclusion, PNU/CME CGCM can predict El Nino and La Nina events at least 12 months ahead in terms of NIino 3.4 SST anomaly, showing much better predictability within 6-month of leading time.

Studies on the Mechanical Properties of Weathered Granitic Soil -On the Elements of Shear Strength and Hardness- (화강암질풍화토(花崗岩質風化土)의 역학적(力學的) 성질(性質)에 관(關)한 연구(硏究) -전단강도(剪斷强度)의 영향요소(影響要素)와 견밀도(堅密度)에 대(對)하여-)

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.66 no.1
    • /
    • pp.16-36
    • /
    • 1984
  • It is very important in forestry to study the shear strength of weathered granitic soil, because the soil covers 66% of our country, and because the majority of land slides have been occured in the soil. In general, the causes of land slide can be classified both the external and internal factors. The external factors are known as vegetations, geography and climate, but internal factors are known as engineering properties originated from parent rocks and weathering. Soil engineering properties are controlled by the skeleton structure, texture, consistency, cohesion, permeability, water content, mineral components, porosity and density etc. of soils. And the effects of these internal factors on sliding down summarize as resistance, shear strength, against silding of soil mass. Shear strength basically depends upon effective stress, kinds of soils, density (void ratio), water content, the structure and arrangement of soil particles, among the properties. But these elements of shear strength work not all alone, but together. The purpose of this thesis is to clarify the characteristics of shear strength and the related elements, such as water content ($w_o$), void ratio($e_o$), dry density (${\gamma}_d$) and specific gravity ($G_s$), and the interrelationship among related elements in order to decide the dominant element chiefly influencing on shear strength in natural/undisturbed state of weathered granitic soil, in addition to the characteristics of soil hardness of weathered granitic soil and root distribution of Pinus rigida Mill and Pinus rigida ${\times}$ taeda planted in erosion-controlled lands. For the characteristics of shear strength of weathered granitic soil and the related elements of shear strength, three sites were selected from Kwangju district. The outlines of sampling sites in the district were: average specific gravity, 2.63 ~ 2.79; average natural water content, 24.3 ~ 28.3%; average dry density, $1.31{\sim}1.43g/cm^3$, average void ratio, 0.93 ~ 1.001 ; cohesion, $ 0.2{\sim}0.75kg/cm^2$ ; angle of internal friction, $29^{\circ}{\sim}45^{\circ}$ ; soil texture, SL. The shear strength of the soil in different sites was measured by a direct shear apparatus (type B; shear box size, $62.5{\times}20mm$; ${\sigma}$, $1.434kg/cm^2$; speed, 1/100mm/min.). For the related element analyses, water content was moderated through a series of drainage experiments with 4 levels of drainage period, specific gravity was measured by KS F 308, analysis of particle size distribution, by KS F 2302 and soil samples were dried at $110{\pm}5^{\circ}C$ for more than 12 hours in dry oven. Soil hardness represents physical properties, such as particle size distribution, porosity, bulk density and water content of soil, and test of the hardness by soil hardness tester is the simplest approach and totally indicative method to grasp the mechanical properties of soil. It is important to understand the mechanical properties of soil as well as the chemical in order to realize the fundamental phenomena in the growth and the distribution of tree roots. The writer intended to study the correlation between the soil hardness and the distribution of tree roots of Pinus rigida Mill. planted in 1966 and Pinus rigida ${\times}$ taeda in 199 to 1960 in the denuded forest lands with and after several erosion control works. The soil texture of the sites investigated was SL originated from weathered granitic soil. The former is situated at Py$\ddot{o}$ngchangri, Ky$\ddot{o}$m-my$\ddot{o}$n, Kogs$\ddot{o}$ng-gun, Ch$\ddot{o}$llanam-do (3.63 ha; slope, $17^{\circ}{\sim}41^{\circ}$ soil depth, thin or medium; humidity, dry or optimum; height, 5.66/3.73 ~ 7.63 m; D.B.H., 9.7/8.00 ~ 12.00 cm) and the Latter at changun-long Kwangju-shi (3.50 ha; slope, $12^{\circ}{\sim}23^{\circ}$; soil depth, thin; humidity, dry; height, 10.47/7.3 ~ 12.79 m; D.B.H., 16.94/14.3 ~ 19.4 cm).The sampling areas were 24quadrats ($10m{\times}10m$) in the former area and 12 in the latter expanding from summit to foot. Each sampling trees for hardness test and investigation of root distribution were selected by purposive selection and soil profiles of these trees were made at the downward distance of 50 cm from the trees, at each quadrat. Soil layers of the profile were separated by the distance of 10 cm from the surface (layer I, II, ... ...). Soil hardness was measured with Yamanaka soil hardness tester and indicated as indicated soil hardness at the different soil layers. The distribution of tree root number per unit area in different soil depth was investigated, and the relationship between the soil hardness and the number of tree roots was discussed. The results obtained from the experiments are summarized as follows. 1. Analyses of simple relationship between shear strength and elements of shear strength, water content ($w_o$), void ratio ($e_o$), dry density (${\gamma}_d$) and specific gravity ($G_s$). 1) Negative correlation coefficients were recognized between shear strength and water content. and shear strength and void ratio. 2) Positive correlation coefficients were recognized between shear strength and dry density. 3) The correlation coefficients between shear strength and specific gravity were not significant. 2. Analyses of partial and multiple correlation coefficients between shear strength and the related elements: 1) From the analyses of the partial correlation coefficients among water content ($x_1$), void ratio ($x_2$), and dry density ($x_3$), the direct effect of the water content on shear strength was the highest, and effect on shear strength was in order of void ratio and dry density. Similar trend was recognized from the results of multiple correlation coefficient analyses. 2) Multiple linear regression equations derived from two independent variables, water content ($x_1$ and dry density ($x_2$) were found to be ineffective in estimating shear strength ($\hat{Y}$). However, the simple linear regression equations with an independent variable, water content (x) were highly efficient to estimate shear strength ($\hat{Y}$) with relatively high fitness. 3. A relationship between soil hardness and the distribution of root number: 1) The soil hardness increased proportionally to the soil depth. Negative correlation coefficients were recognized between indicated soil hardness and the number of tree roots in both plantations. 2) The majority of tree roots of Pinus rigida Mill and Pinus rigida ${\times}$ taeda planted in erosion-controlled lands distributed at 20 cm deep from the surface. 3) Simple linear regression equations were derived from indicated hardness (x) and the number of tree roots (Y) to estimate root numbers in both plantations.

  • PDF