• Title/Summary/Keyword: Surface Model

Search Result 10,502, Processing Time 0.044 seconds

A Study of the on-Line Surface Roughness Monitoring using the Cutting Force in Face Milling Operation (정면밀링작업에서 절삭력을 이용한 On-Line 표면조도 감시에 관한 연구)

  • Baek, Dae Kyun;Ko, Tae Jo;Kim, Hee Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.185-193
    • /
    • 1997
  • This paper presents the on-line monitoring of the surface roughness in a face milling operation. The cut- ting force was used to monitor the surface roughness, since the insert run-outs not only deteriorate surface roughness but also change cutting force. AR model and band energy method were taken to extract the fea- tures from the cutting force. The features extracted from AR modelling are more accurate about the moni- toring than those from band energy method, whereas, the computing speed of the former is slow. An artifi- cal neural network discriminated the level of the surface roughness by using the features extracted via signal processing.

  • PDF

Dynamic analysis of nanoscale beams including surface stress effects

  • Youcef, Djamel Ould;Kaci, Abdelhakim;Benzair, Abdelnour;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.65-74
    • /
    • 2018
  • In this article, an analytic non-classical model for the free vibrations of nanobeams accounting for surface stress effects is developed. The classical continuum mechanics fails to capture the surface energy effects and hence is not directly applicable at nanoscale. A general beam model based on Gurtin-Murdoch continuum surface elasticity theory is developed for the analysis of thin and thick beams. Thus, surface energy has a significant effect on the response of nanoscale structures, and is associated with their size-dependent behavior. To check the validity of the present analytic solution, the numerical results are compared with those obtained in the scientific literature. The influences of beam thickness, surface density, surface residual stress and surface elastic constants on the natural frequencies of nanobeams are also investigated. It is indicated that the effect of surface stress on the vibrational response of a nanobeam is dependent on its aspect ratio and thickness.

A Surface Humidity Model of Drying Concrete Immediately after Placement (타설 직후 건조하는 콘크리트의 표면습도 모형)

  • Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.7 no.3 s.25
    • /
    • pp.23-30
    • /
    • 2005
  • Predicting distribution and variation of humidity inside concrete is essential to improve curing quality of concrete at field. The concrete humidity is predicted by numerical analysis using surface humidity as boundary condition. However, ambient humidity has been used instead of the surface humidity because the surface humidity could not be ccurately measured. Because it is hard to accurately measure the surface humidity, owever, the ambient humidity has been used instead of the surface humidity in the numerical analysis. In this paper, a methodology to accurately measure the surface humidity is suggested, and the ambient humidity and the humidity at the surface and inside the concrete measured by a series of laboratory tests are presented. The cause of low concrete humidity immediately after placement was investigated by a separately performed test. A surface humidity prediction model was developed using the measured humidity, and consequently validated through an additional test.

  • PDF

Background Surface Estimation for Reverse Engineering of Reliefs

  • Liu, Shenglan;Martin, Ralph R.;Langbein, Frank C.;Rosin, Paul L.
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.31-40
    • /
    • 2007
  • Reverse engineering of reliefs aims to turn an existing relief superimposed on an underlying surface into a geometric model which may be applied to a different base surface. Steps in this process include segmenting the relief from the background, and describing it as an offset height field relative to the underlying surface. We have previously considered relief segmentation using a geometric snake. Here, we show how to use this initial segmentation to estimate the background surface lying under the relief, which can be used (i) to refine the segmentation and (ii) to express the relief as an offset field. Our approach fits a B-spline surface patch to the measured background data surrounding the relief, while tension terms ensure this background surface smoothly continues underneath the relief where there are no measured background data points to fit. After making an initial estimate of relief offset height everywhere within the patch, we use a support vector machine to refine the segmentation. Tests demonstrate that this approach can accurately model the background surface where it underlies the relief, providing more accurate segmentation, as well as relief height field estimation. In particular, this approach provides significant improvements for relief concavities with narrow mouths and can segment reliefs with small internal holes.

Reinforcement effect of surface stabilizer using surface curtain walls on aging reservoirs

  • Song, Sang-Huwon;Cho, Dae-Sung;Seo, Se-Gwan
    • Geomechanics and Engineering
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • In Korea, accidents related to the collapse of deteriorated aging reservoirs occur every year. The grouting method is generally applied to reinforce an aging reservoir. However, when using this method, different reinforcing effects appear depending on the ground conditions. Thus, new construction methods and materials capable of providing consistent reinforcing effects are required. In this study, the direct shear test (DST), model test, and simulation analysis were performed to evaluate the impact of surface stabilizers, generally used to reinforce roads, rivers, and slopes of roads, applied using surface curtain walls on aging reservoirs. The DST results indicate that when the surface stabilizer was mixed with in-situ soil, the increase in cohesion was the highest at a mixing ratio of 9%. No changes in the friction angle were evident; therefore, 9% was determined to be the optimal mixing ratio. In addition, the model test and simulation analysis showed that when 9% of the surface stabilizer was mixed and applied to the aging reservoir, the seepage quantity of water and the saturated area were reduced by approximately 42% and 73%, respectively. Moreover, the comprehensive analysis of results showed that the grouting method could be completely replaced by surface stabilizers applied through surface curtain walls because the technique could secure stability by decreasing the seepage in the aging reservoir.

Experimental Validation of the Radial Mapping Rule in Bounding Surface Plasticity Model (경계면 소성 모델의 방사 사상 법칙에 대한 실험적 검토)

  • Jung, Young-Hoon;Lee, Ju-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.171-181
    • /
    • 2013
  • The radial mapping rule in bounding surface model was experimentally investigated by analyzing the drained stress probe tests on Chicago clays. The experimental data obtained from 10 drained stress probe paths were analyzed to calculate the directions of the plastic strain increments. The anisotropic bounding surface model was adopted to represent a bounding yield surface which resides in the pre-consolidation yield stress of undisturbed clays. The projection origins were estimated by finding the interceptions of the straight lines passing through the current stress point and the imaginary yield stress point on the bounding surface. The results show that the projection origin is not fixed at a point but moves toward the direction of the stress probe path after it is established around the initial stress point.

Estimation of Geostrophic Current Calculated from Sea Surface Topography in East Sea (동해의 해면지형 계산에 의한 지형류의 흐름 추정)

  • Yun Hong-Sic;Lee Dong-Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.159-165
    • /
    • 2006
  • This paper deals with the estimation of geostrophic current using the sea surface topography calculated from the geoidal height from EGM96 geopotential model and the mean sea surface height from CLS_SHOM mean sea surface model. The CLS_SHOM model was developed using the altimetry data set. The estimation of geostrophic current is available in the characteristic research of ocean in many country, while for East Sea a few studies were done. The goal of this study is basically to provide the characteristics of geostrophic current in East Sea. The results show that the mean sea surface topography (SST) in East Sea is about 0.37 m and the mean geostrophic velocity is -0.028 m/sec. The Pacific water enters into the East Sea through the Korea Strait and after passing the strait, this inflow splits into two branches: one flows northward along the Korean coast and another outflows into Pacific ocean through Tsugaru and Soya strait passing the east-northeastward along the Japanese outer shelf, and outflows into Okhotsk ocean.

Surface Cover Effect for Reducing Nitrogen Load in Organic Farming Fields using APEX Model (APEX 모형을 이용한 유기농경지에서의 질소 부하량 저감을 위한 지표피복 효과)

  • So, Hyunchul;Jang, Taeil;Kim, Dong-Hyeon;Seol, Dong-Mun;Yoon, Kwangsik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.55-67
    • /
    • 2018
  • The objectives of this study were to monitor organic farming upland compared with conventional upland field and to evaluate nutrient loads reduction of surface cover effect with long-term historical climate data. APEX(Agricultural Policy Environmental eXtender) model was validated with experimental data and used for assessing surface cover scenarios for 30-year simulation periods. The validated values of RMSE(Root Mean Square Error), RMAE(Root Mean Absolute Error), $R^2$ and E(Nash-Sutcliffe efficiency) for runoff were 1.17-1.37 mm/day, 0.28-0.45 mm/day, 0.88-0.90 and 0.82-0.94 in two treatments, respectively. Those for water quality (nitrogen) were 0.05-0.16 kg/ha, 0.52-0.75 kg/ha, 0.67-0.72 and 0.32-0.70 in two treatments, respectively, and therefore the validated model showed good agreement with the observed runoff and nitrogen load for the study period. When decreasing the surface cover rate of organic farming field to 75%, 50%, 25%, and 0% (conventional field), average annual runoff increased by 7%, 15%, 23% and 31%, respectively. Under same condition of decreasing the surface cover rate, average annual nitrogen loads increased by 1.4 times, 1.7 times, 2.0 times, and 2.3 times compared with organic farming field, respectively. This study showed that it is possible to present an appropriate surface cover ratio to maintain conventional production and minimize nonpoint sources pollution for organic farming system, although long-term monitoring is needed to determine its effects on environmental concerns, crop competition, and other uncertainty.

Study on the Model Tests of Cavitation Erosion Occurring in Navy Ship's Flat-Type Rudder (함정의 평판형 방향타 캐비테이션 침식에 대한 모형 시험 연구)

  • Bu-Geun Paik;Jong-Woo Ahn;Young-Ha Park;So-Won Jeong;Jae-Yeol Song;Yoon-Ho Ko
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.31-37
    • /
    • 2023
  • In the present study, a method of performing cavitation erosion test directly on the anodized surface of the rudder model is proposed, not applying ink or paint on its surface. An image processing technique is newly developed to quantitatively evaluate the erosion damages on the rudder model surface after erosion test. The preprocessing saturation image, image smoothing, adaptive hysteresis thresholding and eroded area detection algorithms are in the image processing program. The rudder cavitation erosion tests are conducted in the rudder deflection angle range of 0° to -4°, which is used to maintain a straight course at the highest speed of the targeted navy ship. In the case of the conventional flat-type full-spade rudder currently being used in the target ship, surface erosion can occur on the model rudder surface in the above rudder deflection angle range. The bubble type of cavitation occurs on rudder surface, which is estimated to be the main reason of erosion damage on the rudder surface.

A Simple Microwave Backscattering Model for Vegetation Canopies

  • Oh Yisok;Hong Jin-Young;Lee Sung-Hwa
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.4
    • /
    • pp.183-188
    • /
    • 2005
  • A simple microwave backscattering model for vegetation canopies on earth surfaces is developed in this study. A natural earth surface is modeled as a two-layer structure comprising a vegetation layer and a ground layer. This scattering model includes various scattering mechanisms up to the first-order multiple scattering( double-bounce scattering). Radar backscatter from ground surface has been modeled by the polarimetric semi-empirical model (PSEM), while the backscatter from the vegetation layer modeled by the vector radiative transfer model. The vegetation layer is modeled by random distribution of mixed scattering particles, such as leaves, branches and trunks. The number of input parameters has been minimized to simplify the scattering model. The computation results are compared with the experimental measurements, which were obtained by ground-based scatterometers and NASA/JPL air-borne synthetic aperture radar(SAR) system. It was found that the scattering model agrees well with the experimental data, even though the model used only ten input parameters.