Estimation of Geostrophic Current Calculated from Sea Surface Topography in East Sea

동해의 해면지형 계산에 의한 지형류의 흐름 추정

  • 윤홍식 (성균관대학교 토목공학과) ;
  • 이동하 (성균관대학교 토목환경공학과)
  • Published : 2006.06.01

Abstract

This paper deals with the estimation of geostrophic current using the sea surface topography calculated from the geoidal height from EGM96 geopotential model and the mean sea surface height from CLS_SHOM mean sea surface model. The CLS_SHOM model was developed using the altimetry data set. The estimation of geostrophic current is available in the characteristic research of ocean in many country, while for East Sea a few studies were done. The goal of this study is basically to provide the characteristics of geostrophic current in East Sea. The results show that the mean sea surface topography (SST) in East Sea is about 0.37 m and the mean geostrophic velocity is -0.028 m/sec. The Pacific water enters into the East Sea through the Korea Strait and after passing the strait, this inflow splits into two branches: one flows northward along the Korean coast and another outflows into Pacific ocean through Tsugaru and Soya strait passing the east-northeastward along the Japanese outer shelf, and outflows into Okhotsk ocean.

본 논문에서는 위성고도계자료를 이용하여 개발된 평균해면모델인 CLS_SHOM과 지구중력장 모델인 EGM96으로부터 평균해면고와 지오이드고를 계산하여 해면지형을 계산하고, 이를 이용하여 지형류의 흐름을 추정하였다 지형류의 추정을 통하여 해양의 물리학적인 특성을 연구할 수 있기 때문에 외국에서는 많은 연구가 수행되어 왔으나 우리나라의 경우에는 연구가 이루어지지 않은 상태이다. 본 연구에서는 지형류에 대한 기초연구로서 동해에서의 지형류 흐름특성을 분석하여 제시하였다. 연구결과 동해지역에 대한 해면지형의 평균은 약 37cm로 계산되었고, 지형류 속도는 평균 -0.028m/sec로 계산되었다. 지형류의 흐름은 태평양 해수가 대한해협을 통과하면서 속도가 증가한 후에 일본열도의 외측단을 따라서 동북동 방향으로 거의 일정한 속도로 흐르다가 좁은 Tsugaru 해협과 Soya 해협을 통하여 유출되며, 한반도의 동해안을 따라서 북쪽으로 흐르다가 Soya해협과 북동북으로 향하여 Okhotsk해로 유출되는 것으로 나타났다.

Keywords

References

  1. Anzenhofer, M., Gruber T. and Rentsch M. (1996), Global High Resolution Mean Sea Surface Based on ERS-135 and 168 Day Cycles and TOPEX Data, In: Rapp, Cazenave, Nerem(ed.), Global Gravity Field and Its Temporal Variations, lAG Symp. 166, Springer Berlin
  2. Bilitza, D. (1990), International Reference Ionosphere 1990, Report 90-22, National Space Science Data Center, Greenbelt, Maryland, USA
  3. Boomkamp, H. J. and Moore, P. (1997), A gravity field solution based on unified ERS-1 and TOPEX/Poseidon altimetry, 3rd ERS Symposium on Space at the service of our Environment, Florence, Italy, 14-21 March, pp. 1567
  4. Dobslaw, H., Schwintzer, P., Barthelmes, F., Flechtner, F., Reigber, C., Schmidt, R., Schoene, T. and Wiehl, M. (2004), Geostrophic Ocean Surface Velocities from TOPEX Altimetry, and CHAMP and GRACE Satellite Gravity Models, Scientific Technical Report, ISSN 1610-0956, GeoForschungsZentrum Potsdam(GFZ)
  5. Hernandez, F. and Schaeffer, P. (2000), Altimetric Mean Sea Surfaces and Gravity Anomaly maps Inter-Comparisons, Technical report, AVI-NT-011-5242-CLS, AVISO, France
  6. Lemoine, F. G., Smith, D. E., Smith, R., Kunz, L., Pavlis, E. C, Pavlis, N. K., Klosko, S. M., Chinn, D. S., Torrence, M. H., Williamson, R. G., Cox, C. M., Rachlin, K. E., Wang, Y. M., Kenyon, S. C, Salman, R., Trimmer, R., Rapp, R. H. and Nerem, R. S. (1997), The development of the NASA GSFC and NIMA Joint Geopotential Model, Gravity, Geoid and Marine Geodesy, IAG Sympo. No. 117, Springer-Verlag, pp. 461-469
  7. Park, J. H. and Watts, D. R. (2006), Internal tides in the southwestem Japan/East Sea, Journal of Physical Oceanography, Vol. 36, No. 1, pp. 22-34 https://doi.org/10.1175/JPO2846.1
  8. Pavlis N. K. (2000), On the modeling of long wavelength systematic errors in surface gravimetric data, in: K. P. Schwarz (Ed.) Proceedings of IAG Symposium 121, Geodesy Beyond 2000: The Challenges of the First Decade, Springer, Berlin, pp. 131-136
  9. Pond, S. and Pickard G. L. (1983), Introductory dynamical oceanography, 2nd edn. Pergamon Press, New York
  10. Tapley, B. D. (1982) The Seasat Altimeter Data and its Accuracy Assessment, Journal of Geophysical Research, Vol. 87, No. C5, pp. 3179-3188 https://doi.org/10.1029/JC087iC05p03179
  11. Verges, G. S. (2002) Sea Surface Topograp,hy, Bathymetry and Marine Gravity Field Modelling, UCGE Report No. 20157, Department of Geomatics Engineering, University of Calgary, Canada
  12. Wellenhof, B. H. and Moritz, H. (2005), Physical Geodesy, Springer Wien, New York