• Title/Summary/Keyword: Surface Hardness

Search Result 2,519, Processing Time 0.034 seconds

Effect of Pulse Plating on Hardness of Brass-Alumina Nanocomposite (펄스전류인가가 황동-알루미나 나노복합도금층의 경도에 미치는 영향)

  • 오영주;안재우;안종관;이만승
    • Journal of Surface Science and Engineering
    • /
    • v.35 no.3
    • /
    • pp.158-164
    • /
    • 2002
  • Nanocomposites consisting of a nanocrystalline brass matrix (grain size ; 20-100nm) with sub-micron sized Al2O3 particles (60-200nm) were prepared by pulsed current electrodeposition. The microhardness of the nanocomposite with a grain size of 90-100nm was approximately 1.7 times higher than that of a comparable electrodeposit with no particles. However, significant variations in microhardness were not observed between the nanocomposites with grain sizes of 20 nm and the comparable electrodeposit.

Mathematical Friction Model for Sheet Metal Forming Analysis (박판성형 해석용 수학적 마찰 모델)

  • Keum Y. T.;Song M. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.182-185
    • /
    • 2004
  • Based on the experimental observation, the mathematical friction model, which is an essential information for analyzing the forming process of sheet metal, is developed considering lubricant viscosity, surface roughness and hardness, punch corner radius, and punch speed. By comparing the punch load found by FEM with a proposed friction model with experimental measurement when the coated and uncoated steel sheets are formed in 2-D geometry in dry and lubricant conditions, the validity and accuracy of the developed friction model are demonstrated.

  • PDF

Friction Model for Sheet Metal Forming Analysis(Part 2 :Mathematical Model) (박판성형 해석용 마찰 모델(2부:수학적 모델))

  • 금영탁;이봉현
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.461-465
    • /
    • 2004
  • Based on the experimental observation, the mathematical friction model, which is an essential information for analyzing the forming process of sheet metal, is developed considering lubricant viscosity, surface roughness and hardness, punch comer radius, and punch speed. By comparing the punch load found by FEM with a proposed friction model with experimental measurement when the coated and uncoated steel sheets are formed in 2-D geometry in dry and lubricant conditions, the validity and accuracy of the developed friction model are demonstrated.

Sand Behavior in Casting Mold Fabrication (주형제작과정에서의 주물사 거동)

  • 최우천;신평균
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.164-170
    • /
    • 2000
  • Important factors in a casting mold are strength at the mold surface and gas permeability of the mold. This study investigates the effects of pre-pressure and sand particle hardness on gas permeability, with a constraint that the norm of a stiffness array at the mold surface should be higher than a certain value. The constitutive relation is obtained using a hypoplasticity model. This study is firstly attempted to investigate sand behavior in mold fabrication, and will give a theoretical base for fabricating better molds.

  • PDF

A Study on the Ultrasonic Nano Crystal Surface Modification(UNSM) Technology and It's Application (초음파 나노표면개질기술의 특성과 활용방안 연구)

  • Pyoun, Young-Sik;Park, Jeong-Hyeon;Cho, In-Ho;Kim, Chang-Sik;Suh, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.190-195
    • /
    • 2009
  • All the failure in fatigue of torsion, bending and rolling contact, and in sliding wear begins mostly from surface. So much efforts have been invested to the surface technology which deal these problems during past decades, but the industrial demand keeps growing and more significant requirements are added to researchers and engineers. Nano crystal surface modification technology which makes the surface layers into nano crystalline, induces big and deep compressive residual stress, increases surface hardness, improves surface hardness, and make micro dimples structure on surface is an emerging technology which can break limits of current surface technology and relieve the burden of researchers and engineers. In this study, a nano crystal surface modification technology which is calling UNSM(Ultrasonic nano crystal surface modification) technology, is introduced and how it has been applied to industry to solve these failure problems is explained.

The Study on Estimation Fatigue Limit in Induction Surface Hardened S45C Steel (S45C강의 고주파 열처리 표면경화재 피로한도 예측에 관한 연구)

  • 이수진;전형용;성낙원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.134-142
    • /
    • 1998
  • The effects of small hole defect size and effective case depth(ECD) on the four point bending fatigue limit of induction surface hardened S45C steel were investigated the fatigue limit evaluation of hardened materials is very difficult because of relations of the hardness gradient and residual stress. In this study, it was possible to characterize fatigue limit and fatigue life of induction surface hardened S45C steel in terms of the hole defect size and effective case depth(ECD) and quantitative evaluation of the fatigue limit with hole defects use Murakami's evaluation method and the range of evaluated values is a good accuracy compared with results.

  • PDF

Effect of EDM Conditions when wire-EDM for Titanium Alloy (티타늄합금의 와이어 방전가공시 방전가공 조건의 영향)

  • 김종업;왕덕현;이윤경;김원일
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.281-286
    • /
    • 2001
  • Titanium alloy conducted in this experimental study has superior corrosive resistant and is mainly used in aerospace, automotive and petro-chemical industries. It is also treated with important materials of domestic goods due to improvement of the standard of living. In this study specimens were processed in the wire EDM after annealing, solution treatment and aging. Results were obtained through repeated experments of main rough process and finish process with the change of process parameters. Processing characteristics such as surface hardness, surfaces roughness, shape of processed surface and components were measured. The results confirmed that the above mentioned elements were improved in accordance with the number of process. Therefore, the optimal wire EDM condition in accord with processing characteristics is proposed in this experiment.

  • PDF

A Study on the Distribution of Internal Inclusions and the Fatigue Strength of Induction Surface Hardened Steel (고주파 표면경화재의 내부개재물의 분포와 피로강도에 관한 연구)

  • Song, Sam-Hong;Choi, Byoung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.333-338
    • /
    • 2000
  • Induction surface hardening is widely used to enhance local strength and hardness. However, most research is only to have a focus on fatigue life and fatigue behavior is not so much studied. So, in this study, Cr-Mo steel alloy(SCM440) was used to show the effect of residual stress and micro hole on the fatigue strength for base metal and induction surface hardened specimen. In addition, the fatigue characteristic between surface hardened and fully hardened steel is somewhat different. It is caused by hardness distribution, residual stress and inclusions etc.. Crack origins are generally micro inclusions for the high strength steel. So, the distribution of inclusions is analyzed statistically.

  • PDF

A Study on Surface Integrity in Hard Turning (고경도 선삭에서의 표면품위에 관한 연구)

  • Lee, Han Gyo;Shin, Hyung Gon;Yoo, Seung Hyeon;Kim, Tae Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.871-877
    • /
    • 2012
  • New materials widely used for automobile related industry, aircraft, space development area are mostly high hardness materials. The hardness value of some hardened materials is over HRC45 and machining of this hardened materials is called as hard turning. Hard turning has its advantage on processing flexibility, cycle time and tool cost reduction. Also this process obtains high efficiency in processing and precise surface roughness through application of the CBN tools. In hard turning process with CBN tool, surface integrity is the important factor for considering the design of machine part and component under high stress and load conditions. A purpose of this study is to analyze optimal condition in hard turning process of AISI 52100 steel (HRC62) with high CBN and low CBN on turning characteristics, tool wear mechanism comparison and surface integrity.

The Change in Diffusion Coefficient and Wear Characteristic in Carbonitriding Layer of SCM415 Steel (침탄질화 처리된 SCM415강의 깊이에 따른 확산 및 마모특성 변화)

  • Lee, Su-Yeon;Youn, Kuk-Tea;Huh, Seok-Hwan;Lee, Chan-Gyu
    • Journal of Surface Science and Engineering
    • /
    • v.44 no.5
    • /
    • pp.207-212
    • /
    • 2011
  • In this study, the change in diffusion coefficient and wear characteristic with depth in the carbonitriding layer of SCM415 steel was discussed. To determine the diffusion coefficient, depth profile of carbon was measured from the surface using the Glow Discharge Spectrometer. In otherwise, measurements of carbide fraction, micro vickers hardness of surface and observation of microstructure have been implemented through the SEM image. $Fe_3$(C,N) layer and effective depth were increased as the time for carbonitriding takes longer. According to wear experiment, the results showed that wear resistance was improved by $Fe_3$(C,N) layer and effective depth.