• Title/Summary/Keyword: Surface Flashover Voltage

Search Result 83, Processing Time 0.034 seconds

Analysis of Surface Flashover Depending on Insulator Gap Distance in Vacuum (진공에서 절연체의 연면거리에 따른 파괴전압 분석)

  • Yoon, Jae-Hun;Lim, Jong-Nam;Lim, Kee-Jo;Kang, Seong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1471_1472
    • /
    • 2009
  • In a wide variety of high-voltage applications surface flashover plays major role in the system's performance and yet has not been studied in great detail for vacuum conditions with modern diagnostic tools. surface flashover for both direct current and pulsed voltages in considered. within the setup, parameters such as geometry, material characteristics of the applied voltage can be altered. This paper review surface flashover of insulator, primarily in vacuum. It discusses theories and models relating to surface flashover and experimental results. surface flashover of insulators in vacuum generally is initiated by the emission of electrons from the cathode triple junction point (the region where the electrode, insulator, vacuum). the electrode material was copper, and a AC voltage was applied between the electrodes. these results were compared with the surface flashover characteristic of insulator at results, surface flashover influenced only insulator surface condition. and increasing vacuum pressure was risen breakdown voltage.

  • PDF

Effects of Non-uniform Pollution on the AC Flashover Performance of Suspension Insulators

  • Zhijin, Zhang;Jiayao, Zhao;Donghong, Wei;Xingliang, Jiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.961-968
    • /
    • 2016
  • The non-uniform distribution of contamination on insulator surface has appreciable effects on flashover voltage, and corresponding researches are valuable for the better selection of outdoor insulation. In this paper, two typical types of porcelain and glass insulators which are widely used in ac lines were taken as the research subjects, and their corrections of AC flashover voltage under non-uniform pollution were studied. Besides, their flashover characteristics under different ratio (T/B) of top to bottom surface salt deposit density (SDD) were investigated, including the analysis of flashover voltage, surface pollution layer conductivity and critical leakage current. Test results gave the modified formulas for predicting flashover voltage of the two samples, which can be directly applied in the transmission line design. Also, the analysis delivered that, the basic reason why the flashover voltage increases with the decrease of T/B, is due to the decrease of equivalent surface conductivity of the whole surface and the decrease of critical leakage current. This research will be of certain value in providing references for outdoor insulation selection, as well as in proposing more information for revealing pollution flashover mechanism.

Analysis of Surface flashover Depending on Gap Distance in Epoxy Region (에폭시 연면거리에 따른 파괴전압 분석)

  • Yoon, Jae-Hun;Lee, Sueng-Su;Lim, Kee-Jo;Kang, Seong-Hwa
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.400-400
    • /
    • 2009
  • In a wide variety of high-voltage applications surface flashover plays major role in the system's performance and yet has not been studied in great detail for atmospheric conditions with modem diagnostic tools. surface flashover for both direct current and pulsed voltages in considered. within the setup, parameters such as geometry, material characteristics of the applied voltage can be altered. This paper review surface flashover of insulator, primarily in atmosphere. It discusses theories and models relating to surface flashover and experimental results. surface flashover of insulators in atmosphere generally is initiated by the emission of electrons from the cathode triple junction point (the region where the electrode, insulator, air). the electrode material was copper, and a AC voltage was applied between the electrodes. these results were compared with the surface flashover characteristic of epoxy.

  • PDF

Characteristics of Surface Flashover on Partially Immersed of Spacer in Liquid Nitrogen (액체질소 중에서 spacer의 부분적 침적에 대한 연면 방전특성)

  • 김영석;이병성;백승명;정종만;정순용;김상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.2
    • /
    • pp.177-182
    • /
    • 2000
  • Composite insulation system of liquid nitrogen and solid spacer is widely applied in high temperature superconduction power machine. This study has three step procedure. As follow, first step is composition of parallel deposited electrode and vertically deposited electrode along the direction of immersion in liquid nitrogen(LN2). Second step is investigation into surface flashover voltage of solid spacer under partially immersed in LN2, and last step is comparison the result of this research with that of fully immersed in LN2 and at cryogenic temperature gaseous nitrogen(GN2). This result presented that surface flashover voltage along solid spacer half immersed in LN2 was almost the same as that of fully immersed spacer when the thickness of spacer(t) was t<10mm. In the case of t> 10mm, however, spacer flashover voltage was equal to that obtained in GN2 at cryogenic temperature. And the immersed direction functions as role of deciding the difference of surface flashover voltage.

  • PDF

Analysis on Solid Insulator Flashover Characteristics on Moisture Contamination for Electrical Insulation Improvement of ESS (ESS 안전성 개선을 위한 결로 운전 조건 고려 고체절연물 연면 절연파괴특성 분석)

  • Kim, Jin-Tae;Lee, Seung-Yong;Kim, Ji-young;Seok, Bok Yeol
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.317-321
    • /
    • 2021
  • As the large-scale renewable energy power plant increases, the high-capacity and compact Energy Storage System (ESS) is required. However, this trend could reduce the insulation reliability of ESS. In this study, the surface flashover characteristics for four types of solid insulators are investigated in the uniform electric field with AC and Lightning Impulse (LI) voltage waveforms under various contamination levels. In addtion, insulator surfaces are compared based on the contact angle before and after surface flashover. The experimental results show that AC flashover voltage is dependent on the materials and the contamination level, but LI flashover voltage is only associated with the contamination level. Especially, AC flashover voltage of PC (PolyCarbonate) is higher than that of other insulators, which is associated with the unique and sequential creepage discharge propagation pattern of PC. The localized discharges on the surface of PC form corresponding tracking points. Then, the interconnected trackings result in the complete flashover. This flashover patterns degrade the surface of PC much more than that of epoxy and Bulk Molding Compoud (BMC). Thus, the contact angle of PC is significantly reduced compared to that of other insulators. The increased hydrophilicity in the surface of PC enhances the insulator surface conductivity.

Mechanism and Characteristics of the Surface Flashover on the Laminated Solid Dielectric in N2/O2 Mixture Gas (N2/O2 혼합가스 중 적층된 고체유전체에 대한 연면방전의 메커니즘과 특성)

  • Lim, Dong-Young;Choi, Eun-Hyeok;Choi, Sang-Tae;Bae, Sungwoo;Lee, Kwang-Sik;Choi, Byoung-Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.32-39
    • /
    • 2015
  • This paper presents the surface flashover mechanism of a laminated solid dielectric and describes the surface flashover characteristics with the inherent capacitance of the laminated solid dielectric in a $N_2/O_2$ mixture gas (8:2) under an quasi uniform field. It was found that the electron emission at a cathode and the high-local electric field region around an anode were important factors to reasonably describe the surface flashover mechanism. The surface flashover voltage by the mechanism decreased with the inherent capacitance increase of the laminated solid dielectric. In addition to the surface flashover mechanism and its characteristics, the surface flashover voltage equations as a function of the inherent capacitance were derived by considering a gas pressure used in future eco-friendly GIS and the factors influencing the surface flashover.

Tracking Resistance and Aging Characteristics of Epoxy Insulating Materials by the Rotating Wheel Dip Test (Rotating Wheel Dip Test에 의한 에폭시 절연재료의 내트래킹성과 열화 특성)

  • Cho, Han-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.530-537
    • /
    • 2008
  • This paper describes the results of a study on the tracking performance of outdoor insulating materials based on the rotating wheel dip test(RWDT). And, the influence of surface degradation was evaluated through such as measurement of the flashover voltage after and before tracking test, also aspects of surface degradation using scanning electron microscopy. The time to tracking breakdown of treated filled specimen is longer than untreated filled specimen. And, after the RWDT, the surface of specimen by adding untreated filler appeared heavy erosion. It was found that the addition to surface treated filler, the better tracking resistance. In the RWDT, the breakdown specimen is not affected by the dry flashover voltage, despite the fact that the surface degradation of tracking test has different state on each specimen. This suggests that wet flashover voltage play an important role in evaluating of tracking and erosion on the surface degradation in tracking test. And, the flashover voltage of specimen under wet conditions are greatly affected by the salt concentration and degree of degradation by the RWDT Because of hydrophobicity and degree of degradation by the RWDT, the flashover voltage of treated filled specimen is higher than that of untreated filled specimen. Different types of specimen may have different hydrophobicity and their surface state under contaminated conditions may not be the same.

Modification of DC Flashover Voltage at High Altitude on the Basis of Molecular Gas Dynamics

  • Liu, Dong-Ming;Guo, Fu-Sheng;Sima, Wen-Xia
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.625-633
    • /
    • 2015
  • The effect of altitude on thermal conduction, surface temperature, and thermal radiation of partial arc was investigated on the basis of molecular gas dynamics to facilitate a deep understanding of the pollution surface discharge mechanism. The DC flashover model was consequently modified at high altitude. The validity of the modified DC flashover model proposed in this paper was proven through a comparison with the results of high-altitude simulation experiments and earlier models. Moreover, the modified model was found to be better than the earlier modified models in terms of forecasting the flashover voltage. Findings indicated that both the thermal conduction coefficient and the surface thermodynamics temperature of partial arc had a linear decrease tendency with the altitude increasing from 0 m to 3000 m, both of which dropped by approximately 30% and 3.6%, respectively. Meanwhile, the heat conduction and the heat radiation of partial arc both had a similar linear decrease of approximately 15%. The maximum error of DC pollution flashover voltage between the calculation value according to the modified model and the experimental value was within 6.6%, and the pollution flashover voltage exhibited a parabola downtrend with increasing of pollution.

Characteristics of Surface flashover in LN2 (액체질소 중에서의 연면방전 특성)

  • 정종만;백승명;김상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.1
    • /
    • pp.70-76
    • /
    • 2003
  • For the development of superconducting power apparatus, it is necessary to establish the dielectric technology in coolant like L$N_2$. Therefore in this paper we conducted experiment of surface flashover that could occur in the windings of HTS transformer which will be developed in the pancake coil type. First, we distinguished two types of surface flashover by electrode alignment, such as parallel and vertical, and then compared with each characteristics of surface flashover. The flashover voltage was more affected by thickness of spacer than by surface length when the thickness of spacer is over 1 mm. And the surface flashover with metallic particle attached on the spacer was tested, it was affected by the particle position. The more close to the electrodes, the worse the characteristics. Also the experiment was conducted when the electrode was immersed in liquid nitrogen(L$N_2$) partially. The surface flashover characteristics of spacer was, when immersed partially in 50%, rapidly decreased.

A Study on the Effects of Metallic Barriers on Surface Discharge and It's Application to Insulators and Bushings (연면방전에 미치는 도전층의 영향 및 그 애자, 투관에의 응용에 관한 연구)

  • 정성계
    • 전기의세계
    • /
    • v.19 no.2
    • /
    • pp.1-5
    • /
    • 1970
  • According to the previous studies which was done by the author, the flashover voltage was found to be increased considerably if some metallic barriere are inserted into the flashover discharge path. This paper shows that the flashover voltage in suspension insulators and bushings is raised up by the application of metallic barrier effect on surface discharge. Using moderate metallic barrier configulation the flash over voltage can be raised up by the amount of about 15% compared to that of the convensional type of suspension insulatiors and bushings.

  • PDF