• Title/Summary/Keyword: Surface Films/Coatings

Search Result 181, Processing Time 0.026 seconds

Effect of Si on the Microstructure and Mechanical Properties of Ti-Al-Si-C-N Coatings (Si 함량에 따른 Ti-Al-Si-C-N 코팅막의 미세구조와 기계적 특성의 변화에 관한 연구)

  • Hong, Young-Su;Kwon, Se-Hun;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.2
    • /
    • pp.73-78
    • /
    • 2009
  • Quinary Ti-Al-Si-C-N films were successfully synthesized on SUS 304 substrates and Si wafers by a hybrid coating system combining an arc ion plating technique and a DC reactive magnetron sputtering technique. In this work, the effect of Si content on the microstructure and mechanical properties of Ti-Al-C-N films were systematically investigated. It was revealed that the microstructure of Ti-Al-Si-C-N coatings changed from a columnar to a nano-composite by the Si addition. Due to the nanocomposite microstructure of Ti-Al-Si-C-N coatings, the microhardness of The Ti-Al-Si-C-N coatings significantly increased up to 56 GPa. In addition the average friction coefficients of Ti-Al-Si-C-N coatings were remarkably decreased with Si addition. Therefore, Ti-Al-Si-C-N coatings can be applicable as next-generation hard-coating materials due to their improved hybrid mechanical properties.

Tribological Properties of Carbon Layers Produced by High Temperature Chlorination in Comparison with DLC Coating (DLC 코팅과 비교된 고온 염소처리에 의한 탄소 막의 Tribological 특성)

  • Choi, Hyun-Ju;Bae, Heung-Taek;Na, Byung-Chul;Lee, Jeon-Kook;Lim, Dae-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.375-380
    • /
    • 2007
  • Tribological properties of carbon layers produced by high temperature chlorination of SiC ceramic and DLC (diamond-like carbon) coatings produced by ion plating method were investigated and compared. Carbon coatings were produced by exposure of ball and disc type SiC in chlorine and hydrogen gas mixtures at $1200^{\circ}C$. After treatment for 10 h, dense carbon films up to $180{\mu}m$ in thickness were formed. Tribological behavior of newly developed carbon films were compared with that of DLC films. Wear resistance and frictional coefficient of the surface modified ball and disc type SiC were significantly improved compared to an untreated SiC specimen, and also the modified carbon layer had better performance than DLC coatings. Therefore, in this study, the newly developed carbon films have several advantages over existing carbon coatings such as DLC coatings and showed superior tribological performances.

Effects of Bilayer Period on the Microhardness and Its Strengthening Mechanism of CrN/AlN Superlattice Coatings

  • Kim, SungMin;Kim, EunYoung;Kim, DongJun;La, JoungHyun;Lee, SangYul
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.257-263
    • /
    • 2012
  • CrN/AlN multilayer coatings with various bilayer periods in the range of 1.8 to 7.4 nm were synthesized using a closed-field unbalanced magnetron sputtering method. Their crystalline structure, chemical compositions and mechanical properties have been investigated with Auger electron spectroscopy, X-ray diffractometry, atomic force microscopy, nanoindentation, scratch tests. The properties of the multilayer coatings varied strongly depending upon the magnitude of the bilayer period. The multilayer coating with a bilayer period of 1.8 nm showed the maximum hardness and an elastic modulus of approximately 37.6 and 417 GPa, respectively, which was 1.54 times higher than the hardness predicted by the rule of mixture from the CrN and AlN coatings. The hardness of the multilayer coating increased as the bilayer period decreased, i.e. as the rotation speed increased. The Hall-Petch type relationship, hardness being related to (1/periodicity)$^{-1/2}$, suggested by Lehoczky was confirmed for the CrN/AlN multilayer coatings with bilayer period close to the 5-10 nm range. With decreasing bilayer period, the surface morphology of the films became rougher and the critical load of films for adhesion strength gradually decreased.

Processing and Characterization of RF Magnetron Sputtered TiN Films on AISI 420 Stainless Steel (AISI 420 stainless steel 기판위에 D.C magnetron sputtering 법으로 제조한 TiN 박막의 특성 평가)

  • Song, Seung-Woo;Choe, Han-Cheol;Kim, Young-Man
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.5
    • /
    • pp.199-205
    • /
    • 2006
  • Titanium nitride (TiN) coatings were produced on AISI 420 stainless steel by DC magnetron sputtering of a Ti target changing the processing variables, such as the flow rate of $N_2/Ar$, substrate temperature and the existence of Ti interlayer between TiN coatings and substrates. The hardness and residual stress in the films were investigated using nanoindentation and a laser scanning device, respectively. The stoichiometry and surface morphology were investigated using X-Ray Diffraction and SEM. The corrosion property of the films was also studied using a polarization method in NaCl (0.9%) solution. Mechanical properties including hardness and residual stress were related to the ratio of $N_2/Ar$ flow rate. The corrosion resistance also was related to the processing variables.

A Study on the standardize the characteristic evaluation of DC magnetron sputtered silver coatings for engineering purposes (D.C. magnetron sputter를 이용한 Ag layer 건식 도금층의 특성 평가 국제 표준화에 대한 연구)

  • Gyawali, Gobinda;Choi, Jinhyuk;Lim, Tae Kwan;Jung, Myoung Joon;Lee, Soo Wohn
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.249-249
    • /
    • 2015
  • Silver films have been of considerable interest for years due to their better performance relative to other metal films for engineering applications. A series of multi-layer silver coatings with different thickness (i.e. 0.3 um to 1.5 um) were prepared on Aluminium substrate containing copper undercoat by direct current (DC) magnetron sputtering method. For the comparative purpose, similar thickness silver coatings were prepared by electrolytic deposition method. Microstructural, morphological, and mechanical characteristics of the silver coatings were evaluated by means of scanning electron microscope (SEM), X-ray diffraction (XRD), Surface roughness test, microhardness test and nano-scratch test. From the results, it has been elucidated that the silver films prepared by DC magnetron sputtering method has superior properties in comparison to the wet coating method. On the other hand, DC magnetron sputtering method is relatively easier, faster, eco-friendly and more productive than the electrolytic deposition method that uses several kinds of hazardous chemicals for bath formulation. Therefore, a New Work Item Proposal (NWIP) for the test methods standardization of DC magnetron sputtered silver coatings has recently been proposed via KATS, Korea and a NP ballot is being progressed within a technical committee "ISO/TC107-metallic and other inorganic coating".

  • PDF

A study on the high transparent and antistatic thin films on sodalime glass by reactive pulsed DC magnetron sputtering (Pulsed DC 마그네트론 스퍼터링으로 제조한 소다라임 유리의 고투과 및 대전방지 박막특성 연구)

  • Jung, Jong-Gook;Lim, Sil-Mook
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.353-362
    • /
    • 2022
  • Recently, transmittance of photomasks for ultra-violet (UV) region is getting more important, as the light source wavelength of an exposure process is shortened due to the demand for technologies about high integration and miniaturization of devices. Meanwhile, such problems can occur as damages or the reduction of yield of photomask as electrostatic damage (ESD) occurs in the weak parts due to the accumulation of static electricity and the electric charge on chromium metal layers which are light shielding layers, caused by the repeated contacts and the peeling off between the photomask and the substrate during the exposure process. Accordingly, there have been studies to improve transmittance and antistatic performance through various functional coatings on the photomask surface. In the present study, we manufactured antireflection films of Nb2O5, | SiO2 structure and antistatic films of ITO designed on 100 × 100 × 3 mmt sodalime glass by DC magnetron sputtering system so that photomask can maintain high transmittance at I-line (365 nm). ITO thin film deposited using In/Sn (10 wt.%) on sodalime glass was optimized to be 10 nm-thick, 3.0 × 103 𝛺/☐ sheet resistance, and about 80% transmittance, which was relatively low transmittance because of the absorption properties of ITO thin film. High average transmittance of 91.45% was obtained from a double side antireflection and antistatic thin films structure of Nb2O5 64 nm | SiO2 41 nm | sodalime glass | ITO 10 nm | Nb2O5 64 nm | SiO2 41 nm.

Nanocomposite Coating with TiAlN and Amorphous Carbon Phases Synthesized by Reactive Magnetron Sputtering

  • Kim, Bom Sok;Kim, Dong Jun;La, Joung Hyun;Lee, Sang Yong;Lee, Sang Yul
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.11
    • /
    • pp.801-808
    • /
    • 2012
  • TiAlCN coatings with various C contents were synthesized by unbalanced magnetron sputtering. The characteristics, the crystalline structure, surface morphology, hardness, and friction coefficient of the coatings as a function of the C content were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), a microhardness tester, and a wear test. In addition, their corrosion behaviors in a deaerated 3.5 wt% NaCl solution at $40^{\circ}C$ were investigated by potentiodynamic polarization tests. The results indicated that the $Ti_{14.9}Al_{15.5}C_{30.7}N_{38.9}$ coating had the highest hardness, elastic modulus, and a plastic deformation resistance of 39 GPa, 359 GPa, and 0.55, respectively, and it also had the lowest friction coefficient of approximately 0.26. Comparative evaluation of the TiAlCN coatings indicated that a wide range of coating properties, especially coating hardness, could be obtained by the synthesis methods and processing variables. The microhardness of the coatings was much higher than that from previously reported coating using similar magnetron sputtering processes. It was almost as high as the microhardness measured from the TiAlCN coatings (~41 GPa) synthesized using an arc ion plating process. The potentiodynamic test showed that the corrosion resistance of the TiAlCN coatings was significantly better than the TiAlN coatings, and their corrosion current density ($i_{corr}$), corrosion potentials ($E_{corr}$) and corrosion rate decreased with an increasing C content in the coatings. The much denser microstructure of the coatings due to the increased amount of amorphous phase with increasing C contents in the coatings could result in the the improved corrosion resistance of the coatings.

Effect of deposition parameters on structure of ZnO films deposited by an DC Arc Plasmatron

  • Penkov, Oleksiy V.;Chun, Se-Min;Kang, In-Jae;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.255-255
    • /
    • 2011
  • Zinc oxide based thin films have been extensively studied in recent several years because they have very interesting properties and zinc oxide is non-poisonous, abundant and cheap material. ZnO films are employed in different applications like transparent conductive layers in solar cells, protective coatings and so on. Wide industrial application of the ZnO films requires of development of cheap, effective and scalable technology. Typically used technologies don't completely satisfy the industrial requirements. In the present work, we studied effect of the deposition parameters on the structure and properties of ZnO films deposited by DC arc plasmatron. The varied parameters were gas flow rates, precursor composition, substrate temperature and post-deposition annealing temperature. Vapor of Zinc acetylacetone was used as source materials, oxygen was used as working gas and argon was used as the cathode protective gas and a transport gas for the vapor. The plasmatron power was varied in the range of 700-1500 watts. Flow rate of the gases and substrate temperature rate were varied in the wide range to optimize the properties of the deposited coatings. After deposition films were annealed in the hydrogen atmosphere in the wide range of temperatures. Structure of coatings was investigated using XRD and SEM. Chemical composition was analyzed using x-ray photoelectron spectroscopy. Sheet conductivity was measured by 4-point probe method. Optical properties of the transparent ZnO-based coatings were studied by the spectroscopy. It was shown that deposition by a DC Arc plasmatron can be used for low-cost production of zinc oxide films with good optical and electrical properties. Increasing of the oxygen content in the gas mixture during deposition allow to obtain high-resistive protective and insulation coatings with high adhesion to the metallic surface.

  • PDF

Electrical and Optical Properties of Transparent Conducting Films having GZO/Metal/GZO Hybrid-structure; Effects of Metal Layer(Ag, Cu, Al, Zn) (GZO/Metal/GZO 하이브리드 구조 투명 전도막의 전기적, 광학적 특성; Ag, Cu, Al, Zn 금속 삽입층의 효과)

  • Kim, Hyeon-Beom;Kim, Dong-Ho;Lee, Gun-Hwan;Kim, Kang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.3
    • /
    • pp.148-153
    • /
    • 2010
  • Transparent conducting films having a hybrid structure of GZO/Metal/GZO were prepared on glass substrates by sequential deposition using DC magnetron sputtering. Silver, copper, aluminum and zinc thin films were used as the intermediate metal layers in the hybrid structure. The electrical and optical properties of hybrid transparent conducting films were investigated with varying the thickness of metal layer or GZO layers. With increasing the metal thickness, hybrid films showed a noticeable improvement of the electrical conductivity, which is mainly dependent on the electrical property of the metal layer. GZO(40 nm)/Ag(10 nm)/GZO(40 nm) film exhibits a resistivity of $5.2{\times}10^{-5}{\Omega}{\cdot}cm$ with an optical transmittance of 82.8%. For the films with Zn interlayer, only marginal reduction in the resistivity was observed. Furthermore, unlike other metals, hybrid films with Zn interlayer showed a decrease in the resistivity with increasing the GZO thickness. The optimal thickness of GZO layer for anti-reflection effect at a given thickness of metal (10 nm) was found to be critically dependent on the refractive index of the metal. In addition, x-ray diffraction analysis showed that the insertion of Ag layer resulted in the improvement of crystallinity of GZO films, which is beneficial for the electrical and optical properties of hybrid-type transparent conducting films.

A Study on the Physical Properties of Silicone Type Marine growth Antifouling Coatings (실리콘계 해양생물 부착 방지 도료의 도막 물성 고찰)

  • Kim, Seong-Kil;Choi, Dae-Won;Han, Won-Heui;Kwon, Hyuk-Dong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.134-135
    • /
    • 2013
  • In this study, the physical properties and antifouling were investigated to make the Marine growth antifouling coatings by blending of synthesized silicone resin and pigment with a low surface tension. To examine the film properties and foul release of the prepared coatings, film specimens were prepared with the prepared coatings and anti corrosion coatings. The test results showed that the silicone type antifouling coatings had very excellent antifouling properties rather than any other coatings because of the coating films had followed the low surface tension and elasticity, and prevention of adhesion for marine growth and mechanical adhesions.

  • PDF