• Title/Summary/Keyword: Surface Equation of State

Search Result 196, Processing Time 0.027 seconds

A New Integral Variable Structure Controller For Incorporating Actuator Dynamics

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.10 no.2 s.19
    • /
    • pp.97-102
    • /
    • 2006
  • In this paper, a new simple integral variable structure controller is designed with incorporating the actuator dynamics. The formulation of the VSS (variable structure system) controller design includes integral augmented sliding surface and the dynamics of the actuator expressed as the state equation. An illustrative example is given to show the effectiveness of the developed controller.

  • PDF

Reliability Based Design Optimization using Moving Least Squares (이동최소자승법을 이용한 신뢰성 최적설계)

  • Park, Jang-Won;Lee, Oh-Young;Im, Jong-Bin;Lee, Soo-Yong;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.438-447
    • /
    • 2008
  • This study is focused on reliability based design optimization (RBDO) using moving least squares. A response surface is used to derive a limit-state equation for reliability based design optimization. Response surface method (RSM) with least square method (LSM) or Kriging will be used as a response surface. RSM is fast to make the response surface. On the other hand, RSM has disadvantage to make the response surface of nonlinear equation. Kriging can make the response surface in nonlinear equation precisely but needs considerable amount of computations. The moving least square method (MLSM) is made of both methods (RSM with LSM+Kriging). Numerical results by MLSM are compared with those by LMS in Rosenbrock function and six-hump carmel back function. The RBDO of engine duct of smart UAV is pursued in this paper. It is proved that RBDO is useful tool for aerospace structural optimal design problems.

Thermohydrodynamic Lubrication Analysis of Surface-Textured Parallel Slider Bearing: Effect of Dimple Depth (Surface Texturing한 평행 슬라이더 베어링의 열유체윤활 해석: 딤플 깊이의 영향)

  • Park, TaeJo;Kim, MinGyu
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.288-295
    • /
    • 2017
  • In order to improve the efficiency and reliability of the machine, the friction should be minimized. The most widely used method to minimize friction is to maintain the fluid lubrication state. However, we can reduce friction only up to a certain limit because of viscosity. As a result of several recent studies, surface texturing has significantly reduced the friction in highly sliding machine elements, such as mechanical seals and thrust bearings. Thus far, theoretical studies have mainly focused on isothermal/iso-viscous conditions and have not taken into account the heat generation, caused by high viscous shear, and the temperature conditions on the bearing surface. In this study, we investigate the effect of dimple depth and film-temperature boundary conditions on the thermohydrodynamic (THD) lubrication of textured parallel slider bearings. We analyzed the continuity equation, the Navier-Stokes equation, the energy equation, and the temperature-viscosity and temperature-density relations using a computational fluid dynamics (CFD) code, FLUENT. We compare the temperature and pressure distributions at various dimple depths. The increase in oil temperature caused by viscous shear was higher in the dimple than in the bearing outlet because of the action of the strong vortex generated in the dimple. The lubrication characteristics significantly change with variations in the dimple depths and film-temperature boundary conditions. We can use the current results as basic data for optimum surface texturing; however, further studies are required for various temperature boundary conditions.

Nonlinear Control using Stepwise Fuzzy Moving Sliding Surface (계단형 퍼지 이동 슬라이딩 평면을 이용한 비선형 제어)

  • 유병국;양근호
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.153-156
    • /
    • 2003
  • This short paper suggests a control strategy using a stepwise fuzzy moving sliding surface. The moving surface is a Sugeno-type fuzzy system that has the angle of state error vector and the distance from the origin in the phase plane as inputs and a first-order linear differential equation as an output. The surface initially passes arbitrary initial states and subsequently moves towards a predetermined surface via rotating or shifting. the proposed method reduces the reaching and tracking time and improves robustness. The asymptotic stability of the fuzzy sliding surface is proved. The validity of the proposed control scheme is shown in computer simulation for a second-order nonlinear system.

  • PDF

Study of Lower Hybrid Current Drive for the Demonstration Reactor

  • Molavi-Choobini, Ali Asghar;Naghidokht, Ahmad;Karami, Zahra
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.711-718
    • /
    • 2016
  • Steady-state operation of a fusion power plant requires external current drive to minimize the power requirements, and a high fraction of bootstrap current is required. One of the external sources for current drive is lower hybrid current drive, which has been widely applied in many tokamaks. Here, using lower hybrid simulation code, we calculate electron distribution function, electron currents and phase velocity changes for two options of demonstration reactor at the launched lower hybrid wave frequency 5 GHz. Two plasma scenarios pertaining to two different demonstration reactor options, known as pulsed (Option 1) and steady-state (Option 2) models, have been analyzed. We perceive that electron currents have major peaks near the edge of plasma for both options but with higher efficiency for Option 1, although we have access to wider, more peripheral regions for Option 2. Regarding the electron distribution function, major perturbations are at positive velocities for both options for flux surface 16 and at negative velocities for both options for flux surface 64.

Effects of Critical Minimum Depth in the Coastal Region on Storm Surges using a Three-Dimensional Numerical Experiment (폭풍해일 예측 수치실험에 미치는 연안역 임계최소수심의 영향)

  • Hong, Chul-Hoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.2
    • /
    • pp.168-173
    • /
    • 2014
  • The effect of critical minimum depth in the coastal region on storm surges was examined using a three-dimensional primitive equation model (POM). Case studies using numerical experiments in a small coastal bay in the southern sea of Korea (Hanam Bay) have examined the 'critical depth' (CD) that stabilizes the numerical calculations. Dependence of the CD of typhoon tracks and tidal components such as M2, S2, O1, and K1 were examined. The model results clearly demonstrated that the numerically unstable state of the calculation was caused by the coarse resolution of sea surface elevation.

Influence of a soft FGM interlayer on contact stresses under a beam on an elastic foundation

  • Aizikovich, Sergey M.;Mitrin, Boris I.;Seleznev, Nikolai M.;Wang, Yun-Che;Volkov, Sergey S.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.613-625
    • /
    • 2016
  • Contact interaction of a beam (flexible element) with an elastic half-plane is considered, when a soft inhomogeneous (functionally graded) interlayer is present between them. The beam is bent under the action of a distributed load applied to the surface and a reaction of the elastic interlayer and the half-space. Solution of the contact problem is obtained for different values of thickness and parameters of inhomogeneity of the layer. The interlayer is assumed to be significantly softer than the underlying half-plane; case of 100 times difference in Young's moduli is considered as an example. The influence of the interlayer thickness and gradient of elastic properties on the distribution of the contact stresses under the beam is studied.

Turbulence Models for the Surface Discharge of Heated Water (표면온배수 난류모형)

  • 최흥식;이길성
    • Water for future
    • /
    • v.23 no.4
    • /
    • pp.445-457
    • /
    • 1990
  • In order to predict the dispersion of a thermal discharge with strong turbulent and buoyant effects, the development of a numerical model using turbulence model and its application are significantly increased. In this study, a 3-dimensional steady-state model for the surface discharge of heated water into quiescent water body is developed. For the model closure of turbulent terms the 4-equation turbulence model is used. For economic numerical simulation, the elliptic governing equations are transformed to the partially parabolic equations. In general, the simulated results by the present model agree well to the experimental results by Pande and Rajaratnam. The model characteristics are presented in comparison with the predicted results of the 2-equation turbulence model by McGuirk and Rodi. Applying the 4-equation turbulence model to the Korea nuclear unit 1 at Kori site, feasibility and efficiency of the present model are validated.

  • PDF

인공심장판막의 현황

  • 김형묵
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.94-96
    • /
    • 1989
  • Explosive evaporative removal process of biological tissue by absorption of a CW laser has been simulated by using gelatin and a multimode Nd:YAG laser. Because the point of maximun temperature of laser-irradiated gelatin exists below the surface due to surface cooling, evaporation at the boiling temperature is made explosively from below the surface. The important parameters of this process are the conduction loss to laser power absorption (defined as the conduction-to-laser power parameter, Nk), the convection heat transfer at the surface to conduction loss (defined as Bi), dimensionless extinction coefficient (defined as Br.), and dimensionless irradiation time (defined as Fo). Dependence of Fo on Nk and Bi has been observed by experiment, and the results have been compared with the numerical results obtained by solving a 2-dimensional conduction equation. Fo and explosion depth (from the surface to the point of maximun temperature) are increased when Nk and Bi are increased.To find out the minimum laser power for explosive evaporative removal process, steady state analysis has been also made. The limit of Nk to induce evaporative removal, which is proportional to the inverse of the laser power, has been obtained.

  • PDF

Generalized Rayleigh wave propagation in a covered half-space with liquid upper layer

  • Negin, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.491-506
    • /
    • 2015
  • Propagation of the generalized Rayleigh waves in an initially stressed elastic half-space covered by an elastic layer is investigated. It is assumed that the initial stresses are caused by the uniformly distributed normal compressional forces acting on the face surface of the covering layer. Two different cases where the compressional forces are "dead" and "follower" forces are considered. Three-dimensional linearized theory of elastic waves in initially stressed bodies in plane-strain state is employed and the elasticity relations of the materials of the constituents are described through the Murnaghan potential where the influence of the third order elastic constants is taken into consideration. The dispersion equation is derived and an algorithm is developed for numerical solution to this equation. Numerical results for the dispersion of the generalized Rayleigh waves on the influence of the initial stresses and on the influence of the character of the external compressional forces are presented and discussed. These investigations provide some theoretical foundations for study of the near-surface waves propagating in layered mechanical systems with a liquid upper layer, study of the structure of the soil of the bottom of the oceans or of the seas and study of the behavior of seismic surface waves propagating under the bottom of the oceans.