• Title/Summary/Keyword: Suppression for harmonic current

Search Result 21, Processing Time 0.022 seconds

A study on reducing the harmonics in inverter system for fluorescent lamp (형광등용 인버터 시스템의 고조파 저감에 관한 연구)

  • Park, Chan-Kun;Kim, Jong-Yun;Jeon, Nae-Suck;Park, Jeung-Hwan;Lee, Sung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1199-1201
    • /
    • 2000
  • This paper proposes a harmonics reducing circuit for fluorescent lamp inverters using hybrid type smoothing circuit with pumping and smoothing capacitors. A waveform of full-wave rectification used as a direct current power supply at fluorescent lamp inverters contains a lot of harmonic wave from inrush current which is generated near the maximum of input voltage with purse shape when voltage smoothing capacitor is charged. Therefore, in order to suppress inrush current which will result in harmonic wave. this paper proposes a method to control abrupt charging current by use of charging voltage at pumping capacitor. The suppression of harmonics generation at lamp current is confirmed through simulations.

  • PDF

Harmonic Reduction of Input Current in Boost-type Rectifier Using Sigma-Delta Modulation (시그마델타 변조기를 이용한 승압형 정류기의 입력전류 고조파 저감)

  • Bae, C.H.;Lee, B.S.;Park, H.J.;Lee, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1250-1252
    • /
    • 2003
  • This Paper presents Sigma-Delta Modulation(SDM) schemes to generate switching waveform for a high-power factor boost-type rectifier. The SDM scheme can be implemented by simple digital algorithm unlike conventional PWM schemes with several hardware, and has the characteristics of spectrum-spreading and noise-shaping effects, which are profitable in harmonic reduction of input current in the boost-type rectifier. The comparison results of their spectrum performances shows that the 1st-order SDM has better harmonic suppression effect than conventional PWM scheme and Dithered SDM scheme.

  • PDF

Eliminating the Third Harmonic Effect for Six Phase Permanent Magnet Synchronous Generators in One Phase Open Mode

  • Liu, Jian;Yang, Gui-Jie;Li, Yong;Gao, Hong-Wei;Su, Jian-Yong
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.92-104
    • /
    • 2014
  • To insure stable operation and eliminate twice torque ripple, a topology for a six phase permanent magnet synchronous generator (SP-PMSG) with a neutral point connected together was analyzed in this paper. By adopting an extended transformation matrix, the mathematic model of the space vector control was established. The voltage and torque equations were deduced while considering the third harmonic flux and inductance. In addition, the suppression third harmonic method and the closed loop control strategy were proposed. A comparison analysis indicates that the cooper loss minimum method and the current magnitude minimum method can meet different application requirements. The voltage compensation amount for each of the methods was deduced which also takes into account the third harmonic effect. A simulation and experimental result comparison validates the consistency through theoretical derivation. It can be seen that all of the two control strategies can meet the requirements of post-fault.

Voltage Distortion Suppression for Off-grid Inverters with an Improved Load Current Feedforward Control

  • Geng, Yiwen;Zhang, Xue;Li, Xiaoqiang;Wang, Kai;Yuan, Xibo
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.716-724
    • /
    • 2017
  • The output voltage of an off-grid inverter is influenced by load current, and the voltage harmonics especially the 5th and 7th are increased with nonlinear loads. In this paper, to attenuate the output voltage harmonics of off-grid inverters with nonlinear loads nearby, a load current feedforward is proposed. It is introduced to a voltage control loop based on the Positive and Negative Sequence Harmonic Regulator (PNSHR) compensation to modify the output impedance at selective frequencies. The parameters of the PNSHR are revised with the output impedance of the off-grid inverter, which minimizes the output impedance of the off-grid inverter. Experimental results verify the proposed method, showing that the output voltage harmonics caused by nonlinear loads can be effectively suppressed.

A New Protection Strategy of Impressed Current Cathodic Protection for Ship

  • Oh, Jin-Seok;Kim, Jong-Do
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.592-596
    • /
    • 2004
  • Corrosion is never avoided in the use of materials with various environments. The underwater hull is normally protected against rusting by several coatings of anti-corrosive paint. The purpose of ICCP(Impressed Current Cathodic protection) system is to eliminate the rusting or corrosion, which occurs on metal immersed in seawater. The anode of ICCP system is controlled by an external DC source with converter. The function of anode is to conduct the protective current into seawater. The proposed algorithm includes the harmonic suppression control strategy and the optimum protection strategy and has tried to test the requirement current density for protection, the influence of voltage, the protection potential. This paper was studied the variation of potential and current density with environment factors, time and velocity, and the experimental results will be explained.

A Design on High Frequency CMOS VCO for UWB Applications (UWB 응용을 위한 고주파 CMOS VCO 설계 및 제작)

  • Park, Bong-Hyuk;Lee, Seung-Sik;Choi, Sang-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.2 s.117
    • /
    • pp.213-218
    • /
    • 2007
  • In this paper, we propose the design and fabrication on high frequency CMOS VCO for DS-UWB(Direct-Sequence Ultra-WideBand) applications using 0.18 ${\mu}m$ process. The complementary cross-coupled LC oscillator architecture which is composed of PMOS, NMOS symmetrically, is designed for improving the phase noise characteristic. The resistor is used instead of current source that reduce the 1/f noise of current source. The high-speed buffer is needed for measuring the output characteristic of VCO using spectrum analyzer, therefore the high-speed inverter buffer is designed with VCO. A fabricated core VCO size is $340{\mu}m{\times}535{\mu}m$. The VCO is tunable between 7.09 and 7.52 GHz and has a phase noise lower than -107 dBc/Hz at 1-MHz offset over entire tuning range. The measured harmonic suppression is 32 dB. The VCO core circuit draws 2.0 mA from a 1.8 V supply.

Digital Control of Single Phase UPS for Input Power Factor Compensation (입력역률 보정을 위한 단상 UPS의 디지털제어)

  • Kim, D.G.;Lee, S.H.;Park, H.A.;Lee, K.Y.;Han, E.Y.;Baek, H.L.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2054-2056
    • /
    • 1998
  • A conventional UPS can supply the clean power to the load. However, it may generate input current harmonics and the input power factor can be very poor. Therefore, the UPS itself may be a power interruption. This paper provides multifunctional converter of using single phase UPS. The proposed UPS can supply the clean power to the load without polluting the mains power system. The multi-functional converter provides battery charging, var compensation and harmonic suppression simultaneously. It was simulated to verify this work.

  • PDF

Dual-Loop Power Control for Single-Phase Grid-Connected Converters with LCL Filter

  • Peng, Shuangjian;Luo, An;Chen, Yandong;Lv, Zhipeng
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.456-463
    • /
    • 2011
  • Grid-connected converters have widely adopted LCL filters to acquire high harmonic suppression. However, the LCL filter increases the system order so that the design of the system stability would be complicated. Recently, sole-loop control strategies have been used for grid-connected converters with L or LC filters. But if the sole-loop control is directly transplanted to grid-connected converters with LCL filters, the systems may be unstable. This paper presents a novel dual-loop power control strategy composed of a power outer loop and a current inner loop. The outer loop regulates the grid-connected power. The inner loop improves the system stability margin and suppresses the resonant peak caused by the LCL filter. To obtain the control variables, a single-phase current detection is proposed based on PQ theory. The system transfer function is derived in detail and the influence of control gains on the system stability is analyzed with the root locus. Simulation and experimental results demonstrate the feasibility of the proposed control.

Modified Modular Multilevel Converter with Submodule Voltage Fluctuation Suppression

  • Huang, Xin;Zhang, Kai;Kan, Jingbo;Xiong, Jian
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.942-952
    • /
    • 2017
  • Modular multilevel converters (MMCs) have been receiving extensive research interest in high/medium-voltage applications due to its modularity, scalability, reliability, high-voltage capability, and excellent harmonic performance. Submodule capacitors are usually rather bulky because they have to withstand fundamental frequency voltage fluctuations. To reduce the capacitance of these capacitors, this study proposes a modified MMC with an active power decoupling circuit within each submodule. The modified submodule contains an auxiliary half bridge, with its capacitor split in two. Also, the midpoints of the half bridge and the split capacitors are connected by an inductor. With this modified submodule, the fundamental frequency voltage fluctuation can be suppressed to a great extent. The second-order voltage fluctuation, which is the second most significant component in submodule voltage fluctuations, is removed by the proper control of the second-order circulating current. Consequently, the submodule capacitance is significantly reduced. The viability and effectiveness of the proposed new MMC are confirmed by the simulation and experimental results. The proposed MMC is best suited for medium-voltage applications where power density is given a high priority.

Design and Implementation of Miniature VCO using LTCC Technique (LTCC 기법을 이용한 초소형 VCO 설계 및 구현)

  • 김태현;권원현;이영훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1176-1183
    • /
    • 2003
  • In this paper, miniature voltage-controlled oscillator(VCO) for 1.6 ㎓ PCS band is designed and implemented using the LTCC technique. Circuit level design using commercial components is performed, and passive L, C elements embedded in LTCC substrate is optimized by simulation tools. Embedded passive components are modeled into equivalent circuits and their circuit parameters are extracted for circuit simulation. Utilizing the designed embedded passive elements and 21 layers LTCC substrate, VCO with 4.0${\times}$4.0${\times}$1.6 ㎣ dimensions is designed and fabricated. Developed VCO operates in 2.7 V with 8.5 ㎃ current consumption. The phase noise performance of VCO is below -112.61 ㏈c/㎐ at 100 ㎑ offset and harmonic suppression characteristics is measured above -30 ㏈.