DOI QR코드

DOI QR Code

A Design on High Frequency CMOS VCO for UWB Applications

UWB 응용을 위한 고주파 CMOS VCO 설계 및 제작

  • Park, Bong-Hyuk (Wireless Home Network Research Team, Electronics and Telecommunication Research Institute) ;
  • Lee, Seung-Sik (Wireless Home Network Research Team, Electronics and Telecommunication Research Institute) ;
  • Choi, Sang-Sung (Wireless Home Network Research Team, Electronics and Telecommunication Research Institute)
  • 박봉혁 (한국전자통신연구원 무선홈네트워크연구팀) ;
  • 이승식 (한국전자통신연구원 무선홈네트워크연구팀) ;
  • 최상성 (한국전자통신연구원 무선홈네트워크연구팀)
  • Published : 2007.02.28

Abstract

In this paper, we propose the design and fabrication on high frequency CMOS VCO for DS-UWB(Direct-Sequence Ultra-WideBand) applications using 0.18 ${\mu}m$ process. The complementary cross-coupled LC oscillator architecture which is composed of PMOS, NMOS symmetrically, is designed for improving the phase noise characteristic. The resistor is used instead of current source that reduce the 1/f noise of current source. The high-speed buffer is needed for measuring the output characteristic of VCO using spectrum analyzer, therefore the high-speed inverter buffer is designed with VCO. A fabricated core VCO size is $340{\mu}m{\times}535{\mu}m$. The VCO is tunable between 7.09 and 7.52 GHz and has a phase noise lower than -107 dBc/Hz at 1-MHz offset over entire tuning range. The measured harmonic suppression is 32 dB. The VCO core circuit draws 2.0 mA from a 1.8 V supply.

본 논문에서는 CMOS 0.18 ${\mu}m$ 공정을 이용하여 DS-CDMA UWB용 고주파 VCO를 설계하고 제작하였다. 위상 잡음 특성을 좋게 하기 위해서 PMOS, NMOS 소자를 대칭으로 구성한 complementary cross-coupled LC 발진기 구조로 설계하였고, varactor를 이용하여 주파수를 조정하였다. 또한 전류원의 1/f 잡음 신호를 줄이기 위해 저항을 이용하여 전류원을 구성하였다. 스펙트림 분석기를 이용한 측정을 위해 칩 내부에 고속 동작을 위한 인버터 버퍼를 추가로 설계하였다. 제작한 VCO의 core size는 $340{\mu}m{\times}535{\mu}m$이고, 측정한 VCO의 위상 잡음은 1-MHz offset에서 -107 dBc/Hz의 특성을 나타내고, 주파수 조정 범위는 $7.09{\sim}7.52$ GHz의 특성을 보인다 Harmonic suppression은 32 dB, VCO core의 전류 소모는 1.8 V 공급 전압에서 2 mA의 저전력 소모를 나타내도록 설계하였다.

Keywords

References

  1. B. Razavi, RF Microelectronics, Prentice-Hall, 1998
  2. Matt Welborn, DS-UWB Physical Layer Submission to 802.15 Task Group 3a, IEEE P802.15-04/r-00137r0
  3. Ali. Hajimiri, Thomas H. Lee, 'Design issues in CMOS differential LC oscillators', IEEE Journal of Solid-state Circuits, vol. 34, no. 5, May 1999
  4. A. Hajimiri, T. H. Lee, 'A general theory of phase noise in electrical oscillators', IEEE J. Solid-State Circuits, vol. 33, pp. 179-194, Feb. 1998 https://doi.org/10.1109/4.658619
  5. Peter Vancorenland, Michiel S. J. Steyaert, 'A 1.57-GHz fully integrated very low-phase-noise auadrature VCO', IEEE J. of Solid-State, vol. 37, no. 5, pp. 653-656, May 2002 https://doi.org/10.1109/4.997860
  6. A. Ravi, K. Soumyanath, R. E. Bishop, B. A. Bloechel, and L. R. Carley, 'An optimally transformer coupled, 5 GHz quadrature VCO in a 0.18 ${\mu}m$ digital CMOS process', in Symp. VLSI Circuits Dig. Tech. Papers, pp. 141-144, Jun. 2003
  7. D. Baek, T. Song, E. Yoon, and S. Hong, '8 GHz CMOS quadrature VCO using transformer-based LC tank', IEEE Microw. Wireless Compon. Lett., vol. 13, no. 10, pp. 446-448, Oct. 2003 https://doi.org/10.1109/LMWC.2003.815685
  8. N. J. Oh, S. G. Lee, '11-GHz CMOS differential VCO with back-gate transformer feedback', IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 733-735, Nov. 2005 https://doi.org/10.1109/LMWC.2005.858994
  9. Multi-band OFDM Physical Layer Proposal for IEEE802.15 Task Group 3a, IEEE P802.15-03/268r1