• Title/Summary/Keyword: Supported metal oxide catalyst

Search Result 29, Processing Time 0.039 seconds

디젤엔진 배기가스조건하에서의 Pt 및 Ag 담지 알루미나 촉매의 열적 노화 특성과 SOx 피독 특성에 관한 연구 (A Study on the Thermal Aging and SOx Poisoning Characteristics on Alumina Supported Silver Catalyst under Diesel Engine Emission Condition)

  • 신병선
    • 한국대기환경학회지
    • /
    • 제16권2호
    • /
    • pp.199-208
    • /
    • 2000
  • In this study we investigated on the possibility of platinum and silver catalysts as de-NOx catalyst for activity test of supported metal oxide catalysts. the study was performed with the change of amount of metal and support types. The catalyst was prepared the activity of alumina supported silver catalyst produced by dry and wet impregnation method respectively and the resistance of sulfur for optimum supported silver catalyst,. As a result the activity of alumina supported platinum catalyst was showed at low temperature region but the case of silver catalyst activated at high temperature region. So we finally chose alumina supported silver catalyst as de-NOx target catalyst because alumina supported catalyst showed higher activity than alumina supported platinum catalyst.

  • PDF

디젤엔진 배기가스중 질소산화물 저감을 위한 금속 산화물 촉매를 이용한 실험적 연구 (An Experimental Study on the Reduction of Nitric Oxides from the Diesel Engine Exhaust Gas with Metal Supported Oxides Catalysts)

  • 채재우;황재원;정지용;한정희;황화자;김석
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.68-75
    • /
    • 2001
  • In this paper, a number of supported metal oxides and perovskite type catalysts were investigated for the NOx reduction from the diesel engine exhaust gas. All catalysts were made into pellets type with diameter of 3-4 mm alumina(Al$_2$O$_3$) as a supporter. These samples were tested by real diesel exhaust gas which contains CO, hydrocarbons and soot in the temperature range of 150~55$0^{\circ}C$ with the $3300h^{-1}$ space velocity (SV). Among the results, several promising catalysts showed NOx conversion above 50% in the temperature range of 150-35$0^{\circ}C$. From these results supported metal oxides catalysts and perovskite type could be recommended for the practical application to the automobile exhaust treatments.

  • PDF

Oxidation of Ethylbenzene Using Nickel Oxide Supported Metal Organic Framework Catalyst

  • Peng, Mei Mei;Jeon, Ung Jin;Ganesh, Mani;Aziz, Abidov;Vinodh, Rajangam;Palanichamy, Muthiahpillai;Jang, Hyun Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권11호
    • /
    • pp.3213-3218
    • /
    • 2014
  • A metal organic framework-supported Nickel nanoparticle (Ni-MOF-5) was successfully synthesized using a simple impregnation method. The obtained solid acid catalyst was characterized by Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption-desorption and thermogravimetric analysis (TGA). The catalyst was highly crystalline with good thermodynamic stability (up to $400^{\circ}C$) and high surface area ($699m^2g^{-1}$). The catalyst was studied for the oxidation of ethyl benzene, and the results were monitored via gas chromatography (GC) and found that the Ni-MOF-5 catalyst was highly effective for ethyl benzene oxidation. The conversion of ethyl benzene and the selectivity for acetophenone were 55.3% and 90.2%, respectively.

TiO2에 담지된 금속 산화물 촉매상에서 TCE 산화분해반응 (Oxidative Decomposition of TCE over TiO2-Supported Metal Oxide Catalysts)

  • 양원호;김문현
    • 한국환경과학회지
    • /
    • 제15권3호
    • /
    • pp.221-227
    • /
    • 2006
  • Oxidative TCE decomposition over $TiO_2$-supported single and complex metal oxide catalysts has been conducted using a continuous flow type fixed-bed reactor system. Different types of commercial $TiO_2$ were used for obtaining the supported catalysts via an incipient wetness technique. Among a variety of titanias and metal oxides used, a DT51D $TiO_2\;and\;CrO_x$ would be the respective promising support and active ingredient for the oxidative TCE decomposition. The $TiO_2-based\;CrO_x$ catalyst gave a significant dependence of the catalytic activity in TCE oxidation reaction on the metal loadings. The use of high $CrO_x$ contents for preparing $CrO_x/TiO_2$ catalysts might produce $Cr_2O_3$ crystallites on the surface of $TiO_2$, thereby decreasing catalytic performance in the oxidative decomposition at low reaction temperatures. Supported $CrO_x$-based bimetallic oxide systems offered a very useful approach to lower the $CrO_x$ amounts without any loss in their catalytic activity for the catalytic TCE oxidation and to minimize the formation of Cl-containing organic products in the course of the catalytic reaction.

수중에서 금속 촉매의 니트릴 수화 반응에 의한 환경친화적 아미드 합성 (Environmentally Friendly Synthesis of Amide by Metal-catalyzed Nitrile Hydration in Aqueous Medium)

  • 무하마드 아십 후세인;김정원
    • 공업화학
    • /
    • 제26권2호
    • /
    • pp.128-131
    • /
    • 2015
  • 친환경적 조건에서의 니트릴의 수화 반응은 아미드를 생산하기 위한 가장 경제적이고 매력적인 방법이다. 고체 금속 산화물과 지지체를 이용한 전이 금속 촉매 시스템은 이러한 니트릴 수화 반응을 보다 향상시키기 위한 의미 있는 연구로써 수행되어져 왔다. 이들 촉매들의 중요한 특징은 방향족, 지방족, 이종 원자형, 지방족 고리형 등의 니트릴들을 포함하는 넓은 범위의 다양한 기질들에 적용된다는 것이다. 또한 이들은 높은 촉매적 활성을 유지하면서 여러 번의 재사용성이 가능하고 반응 후 그 혼합물로부터 분리가 용이하다는 장점들을 갖는다. 이 리뷰를 통하여 니트릴 수화반응을 통한 아미드 합성에 적용되는 금속 산화물과 지지체를 가진 금속 촉매들에 대해 알아본다.

촉매제어를 통한 촉매화학기상증착법으로 성장시킨 탄소나노튜브의 특성분석 (The characteristics of grown carbon nanotubes by controlled catalyst preparation at the catalytic chemical vapor deposition)

  • 김종식;김관하;김창일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1378-1379
    • /
    • 2006
  • Carbon nanotubes (CNTs) with few defects and very small amount of amorphous carbon coating have been synthesized by catalytic decomposition of acetylene in $H_2$ over well-dispersed metal particles supported on MgO. The yield, quality and diameters of CNTs were obtained by control of catalyst metal compositions to be used. The optimization condition of carbon nanotubes with high yield is when Co and Mo are in a 1:1 ratio and Fe metal contents to Co is increased on magnesium oxide support. It is also found that the diameter of the as-prepared CNTs can be controlled mainly by adjusting the molar ratio of Fe-Mo, Co-Fe, and Co-Mo versus the MgO support. Our results indicated that desired diameter distribution of CNTs is obtained by choosing or combining the catalyst to be employed.

  • PDF

Ultrathin Titania Coating for High-temperature Stable $SiO_2$/Pt Nanocatalysts

  • Reddy, A. Satyanarayana;Kim, S.;Jeong, H.Y.;Jin, S.;Qadir, K.;Jung, K.;Jung, C.H.;Yun, J.Y.;Cheon, J.Y.;Joo, S.H.;Terasaki, O.;Park, Jeong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.217-217
    • /
    • 2011
  • Recently, demand for thermally stable metal nanoparticles suitable for chemical reactions at high temperatures has increased to the point to require a solution to nanoparticle coalescence. Thermal stability of metal nanoparticles can be achieved by adopting core-shell models and encapsulating supported metal nanoparticles with mesoporous oxides [1,2]. However, to understand the role of metal-support interactions on catalytic activity and for surface analysis of complex structures, we developed a novel catalyst design by coating an ultra-thin layer of titania on Pt supported silica ($SiO_2/Pt@TiO_2$). This structure provides higher metal dispersion (~52% Pt/silica), high thermal stability (~600$^{\circ}C$) and maximization of the interaction between Pt and titania. The high thermal stability of $SiO_2/Pt@TiO_2$ enabled the investigation of CO oxidation studies at high temperatures, including ignition behavior, which is otherwise not possible on bare Pt nanoparticles due to sintering [3]. It was found that this hybrid catalyst exhibited a lower activation energy for CO oxidation because of the metal-support interaction. The concept of an ultra-thin active metal oxide coating on supported nanoparticles opens-up new avenues for synthesis of various hybrid nanocatalysts with combinations of different metals and oxides to investigate important model reactions at high-temperatures and in industrial reactions.

  • PDF

Effect of Support of Two-Dimensional Pt Nanoparticles/Titania on Catalytic Activity of CO Oxidation

  • Qadir, Kamran;Kim, Sang-Hoon;Kim, S.M.;Reddy, A.S.;Jin, S.;Ha, H.;Park, Jeong-Y.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.246-246
    • /
    • 2012
  • Smart catalyst design though novel catalyst preparation methods can improve catalytic activity of transition metals on reducible oxide supports such as titania by enhancement of metal oxide interface effects. In this work, we investigated Pt nanoparticles/titania catalysts under CO oxidation reaction by using novel preparation methods in order to enhance its catalytic activity by optimizing metal oxide interface. Arc plasma deposition (APD) and metal impregnation techniques are employed to achieve Pt metal deposition on titania supports which are prepared by multi-target sputtering and Sol-gel techniques. In order to tailor metal-support interface for catalytic CO oxidation reaction, Pt nanoparticles and thin films are deposited in varying surface coverages on sputtered titania films using APD. To assess the role of oxide support at the interface, APD-Pt is deposited on sputtered and Sol-gel prepared titania films. Lastly, characteristics of APD-Pt process are compared with Pt impregnation technique. Our results show that activity of Pt nanoparticles is improved when supported over Sol-Gel prepared titania than sputtered titania film. It is suggested that this enhanced activity can be partly ascribed to a very rough titania surface with the higher free metal surface area and higher number of sites at the interface between the metal and the support. Also, APD-Pt shows superior catalytic activity under CO oxidation as compared to Pt impregnation on sputtered titania support. XPS results show that bulk oxide is formed on Pt when deposited through impregnation and has higher proportion of oxidized Pt in the form of $Pt^{2+/4+}$ oxidation states than Pt metal. APD-Pt shows, however, mild oxidation with large proportion of active Pt metal. APD-Pt also shows trend of increasing CO oxidation activity with number of shots. The activity continues to increase with surface coverage beyond 100%, thus suggesting a very rough and porous Pt films with higher active surface metal sites due to an increased surface area available for the reactant CO and $O_2$ molecules. The results suggest a novel approach for systematic investigation into metal oxide interface by rational catalysts design which can be extended to other metal-support systems in the future.

  • PDF

Long-Term Stability for Co-Electrolysis of CO2/Steam Assisted by Catalyst-Infiltrated Solid Oxide Cells

  • Jeong, Hyeon-Ye;Yoon, Kyung Joong;Lee, Jong-Ho;Chung, Yong-Chae;Hong, Jongsup
    • 한국세라믹학회지
    • /
    • 제55권1호
    • /
    • pp.50-54
    • /
    • 2018
  • This study investigated the long-term durability of catalyst(Pd or Fe)-infiltrated solid oxide cells for $CO_2$/steam co-electrolysis. Fuel-electrode supported solid oxide cells with dimensions of $5{\times}5cm^2$ were fabricated, and palladium or iron was subsequently introduced via wet infiltration (as a form of PdO or FeO solution). The metallic catalysts were employed in the fuel-electrode to promote $CO_2$ reduction via reverse water gas shift reactions. The metal-precursor particles were well-dispersed on the fuel-electrode substrate, which formed a bimetallic alloy with Ni embedded on the substrate during high-temperature reduction processes. These planar cells were tested using a mixture of $H_2O$ and $CO_2$ to measure the electrochemical and gas-production stabilities during 350 h of co-electrolysis operations. The results confirmed that compared to the Fe-infiltrated cell, the Pd-infiltrated cell had higher stabilities for both electrochemical reactions and gas-production given its resistance to carbon deposition.

일산화탄소 저온 산화에서 금속산화물에 담지된 금촉매의 활성에 미치는 수분첨가의 영향 (Effect of Water Addition on Activity of Gold Catalysts Supported on Metal Oxide at Low Temperature CO Oxidation)

  • 안호근;김기중;정민철
    • Korean Chemical Engineering Research
    • /
    • 제49권6호
    • /
    • pp.720-725
    • /
    • 2011
  • 금속질산염과 염화금산을 전구체로 사용하여 다양한 금속산화물($$Al_{2}O_{3}$, ZnO, $Fe_{2}O_{3}$, $Cr_{2}O_{3}$, $MnO_{2}$, CuO, NiO, $Co_{3}O_{4}$)에 담지된 금촉매를 공침법을 이용하여 제조한 후, 일산화탄소 산화반응에서 수분첨가의 영향을 검토하였다. 이들 중 $Co_{3}O_{4}$와 ZnO에 담지된 금촉매가 일산화탄소에 대하여 높은 활성을 보여주었다. 반응가스 중에 수분이 첨가될 때 Au/$Co_{3}O_{4}$ 촉매는 활성이 약간 감소하였으나, Au/ZnO 촉매에서는 활성이 크게 증가하여 수분에 의한 일산화탄소 산화 활성은 담체의 종류에 크게 의존함을 알 수 있었다. 반응가스 중에 포함된 수분에 관계없이 반응 전과 후의 Au(5 wt%)/ZnO 촉매의 금입자 크기는 거의 변하지 않아 활성이 감소되는 이유는 금입자들의 소결에 의한 영향보다는 카보네이트와 같은 화학종에 의해 불활성화가 일어남을 알 수 있었으며, 이 화학종은 수분의 첨가에 의해 이산화탄소로 분해되어 활성이 증가한 것으로 생각된다.