• 제목/요약/키워드: Support Vector Machine-Regression

검색결과 381건 처리시간 0.019초

머신러닝을 이용한 급성 뇌졸중 퇴원 환자의 중증도 보정 사망 예측 모형 개발에 관한 연구 (A study on the development of severity-adjusted mortality prediction model for discharged patient with acute stroke using machine learning)

  • 백설경;박종호;강성홍;박혜진
    • 한국산학기술학회논문지
    • /
    • 제19권11호
    • /
    • pp.126-136
    • /
    • 2018
  • 본 연구는 머신러닝을 활용하여 급성 뇌졸중 퇴원 환자의 중증도 보정 사망 예측 모형 개발을 목적으로 시행하였다. 전국 단위의 퇴원손상심층조사 2006~2015년 자료 중 한국표준질병사인분류(Korean standard classification of disease-KCD 7)에 따라 뇌졸중 코드 I60-I63에 해당하는 대상자를 추출하여 분석하였다. 동반질환 중증도 보정 도구로는 Charlson comorbidity index(CCI), Elixhauser comorbidity index(ECI), Clinical classification software(CCS)의 3가지 도구를 사용하였고 중증도 보정 모형 예측 개발은 로지스틱회귀분석, 의사결정나무, 신경망, 서포트 벡터 머신 기법을 활용하여 비교해 보았다. 뇌졸중 환자의 동반질환으로는 ECI에서는 합병증을 동반하지 않은 고혈압(hypertension, uncomplicated)이 43.8%로, CCS에서는 본태성고혈압(essential hypertension)이 43.9%로 다른 질환에 비해 가장 월등하게 높은 것으로 나타났다. 동반질환 중중도 보정 도구를 비교해 본 결과 CCI, ECI, CCS 중 CCS가 가장 높은 AUC값으로 분석되어 가장 우수한 중증도 보정 도구인 것으로 확인되었다. 또한 CCS, 주진단, 성, 연령, 입원경로, 수술유무 변수를 포함한 중증도 보정 모형 개발 AUC값은 로지스틱 회귀분석의 경우 0.808, 의사결정나무 0.785, 신경망 0.809, 서포트 벡터 머신 0.830로 분석되어 가장 우수한 예측력을 보인 것은 서포트 벡터머신 기법인 것으로 최종 확인되었고 이러한 결과는 추후 보건의료정책 수립에 활용될 수 있을 것이다.

Using Machine Learning Technique for Analytical Customer Loyalty

  • Mohamed M. Abbassy
    • International Journal of Computer Science & Network Security
    • /
    • 제23권8호
    • /
    • pp.190-198
    • /
    • 2023
  • To enhance customer satisfaction for higher profits, an e-commerce sector can establish a continuous relationship and acquire new customers. Utilize machine-learning models to analyse their customer's behavioural evidence to produce their competitive advantage to the e-commerce platform by helping to improve overall satisfaction. These models will forecast customers who will churn and churn causes. Forecasts are used to build unique business strategies and services offers. This work is intended to develop a machine-learning model that can accurately forecast retainable customers of the entire e-commerce customer data. Developing predictive models classifying different imbalanced data effectively is a major challenge in collected data and machine learning algorithms. Build a machine learning model for solving class imbalance and forecast customers. The satisfaction accuracy is used for this research as evaluation metrics. This paper aims to enable to evaluate the use of different machine learning models utilized to forecast satisfaction. For this research paper are selected three analytical methods come from various classifications of learning. Classifier Selection, the efficiency of various classifiers like Random Forest, Logistic Regression, SVM, and Gradient Boosting Algorithm. Models have been used for a dataset of 8000 records of e-commerce websites and apps. Results indicate the best accuracy in determining satisfaction class with both gradient-boosting algorithm classifications. The results showed maximum accuracy compared to other algorithms, including Gradient Boosting Algorithm, Support Vector Machine Algorithm, Random Forest Algorithm, and logistic regression Algorithm. The best model developed for this paper to forecast satisfaction customers and accuracy achieve 88 %.

Prediction of squeezing phenomenon in tunneling projects: Application of Gaussian process regression

  • Mirzaeiabdolyousefi, Majid;Mahmoodzadeh, Arsalan;Ibrahim, Hawkar Hashim;Rashidi, Shima;Majeed, Mohammed Kamal;Mohammed, Adil Hussein
    • Geomechanics and Engineering
    • /
    • 제30권1호
    • /
    • pp.11-26
    • /
    • 2022
  • One of the most important issues in tunneling, is the squeezing phenomenon. Squeezing can occur during excavation or after the construction of tunnels, which in both cases could lead to significant damages. Therefore, it is important to predict the squeezing and consider it in the early design stage of tunnel construction. Different empirical, semi-empirical and theoretical-analytical methods have been presented to determine the squeezing. Therefore, it is necessary to examine the ability of each of these methods and identify the best method among them. In this study, squeezing in a part of the Alborz service tunnel in Iran was estimated through a number of empirical, semi- empirical and theoretical-analytical methods. Among these methods, the most robust model was used to obtain a database including 300 data for training and 33 data for testing in order to develop a machine learning (ML) method. To this end, three ML models of Gaussian process regression (GPR), artificial neural network (ANN) and support vector regression (SVR) were trained and tested to propose a robust model to predict the squeezing phenomenon. A comparative analysis between the conventional and the ML methods utilized in this study showed that, the GPR model is the most robust model in the prediction of squeezing phenomenon. The sensitivity analysis of the input parameters using the mutual information test (MIT) method showed that, the most sensitive parameter on the squeezing phenomenon is the tangential strain (ε_θ^α) parameter with a sensitivity score of 2.18. Finally, the GPR model was recommended to predict the squeezing phenomenon in tunneling projects. This work's significance is that it can provide a good estimation of the squeezing phenomenon in tunneling projects, based on which geotechnical engineers can take the necessary actions to deal with it in the pre-construction designs.

낙동강 조간대 연약지반의 지역별 점성토층 두께 추정 모델 개발에 관한 연구 (A Study on the Development of Model for Estimating the Thickness of Clay Layer of Soft Ground in the Nakdong River Estuary)

  • 안성인;류동우
    • 터널과지하공간
    • /
    • 제32권6호
    • /
    • pp.586-597
    • /
    • 2022
  • 본 연구에서는 국내 주요 연약지반으로 알려진 낙동강 조간대 지역의 압밀침하 취약성 평가에 활용할 상부 점성토층의 위치별 두께 정보를 추정할 수 있는 모델을 개발하였다. 두께정보 추정을 위하여 기계학습 알고리즘인 RF (Random Forest), SVR (Support Vector Regression), GPR (Gaussian Process Regression)과 지구통계기법인 정규크리깅(Ordinary Kriging)을 이용한 4가지 공간추정 모델을 개발하고 상호 비교하였다. 모델 개발을 위하여 수집한 연구지역의 시추공 자료 4,712개 중 상부점성토층이 존재하는 2,948개의 시추공 자료를 사용하였으며, 개발된 모델들의 성능을 정량적으로 평가하기 위하여 피어슨(Pearson) 상관계수와 오차제곱평균(mean squared error)을 사용하였다. 또한, 정성적 평가를 위하여 연구지역 전역에 상부점성토층의 두께를 추정하여 점성토층의 지역별 분포 특성을 상호 비교하였다.

인공 신경망과 지지 벡터 회귀분석을 이용한 대학 캠퍼스 건물의 전력 사용량 예측 기법 (An Electric Load Forecasting Scheme for University Campus Buildings Using Artificial Neural Network and Support Vector Regression)

  • 문지훈;전상훈;박진웅;최영환;황인준
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제5권10호
    • /
    • pp.293-302
    • /
    • 2016
  • 전기는 생산과 소비가 동시에 이루어지므로 필요한 전력 사용량을 예측하고, 이를 충족시킬 수 있는 충분한 공급능력을 확보해야만 안정적인 전력 공급이 가능하다. 특히, 대학 캠퍼스는 전력 사용이 많은 곳으로 시간과 환경에 따라 전력 변화폭이 다양하다. 이러한 이유로, 효율적인 전력 공급 및 관리를 위해서는 전력 사용량을 실시간으로 예측할 수 있는 모델이 요구된다. 국내외 대학 건물에 대해서는 전력 사용 패턴과 사례 분석을 통해 전력 사용에 영향을 주는 요인들을 파악하기 위한 다양한 연구가 진행되었으나, 전력 사용량의 정량적 예측을 위해서는 더 많은 연구가 필요한 상황이다. 본 논문에서는, 기계 학습 기법을 이용하여 대학 캠퍼스의 전력 사용량 예측 모델을 구성하고 평가한다. 이를 위해, 대학 캠퍼스의 주요 건물 클러스터에 대해 전력 사용량을 15분마다 1년 이상 수집한 데이터 셋을 사용한다. 수집된 전력 사용량 데이터는 수열 형태의 시계열 데이터로 기계 학습 모델에 적용 시 주기성 정보를 반영할 수 없으므로, 2차원 공간의 연속적인 데이터로 증강함으로써 주기성을 반영하였다. 이 데이터와 교육기관의 특성을 반영하기 위한 요일과 공휴일로 구성된 8차원 특성 벡터에 대해 주성분 분석(Principal Component Analysis) 알고리즘을 적용한다. 이어, 인공 신경망(Artificial Neural Network)과 지지 벡터 회귀분석(Support Vector Regression)을 이용하여 전력 사용량 예측 모델을 학습시키고, 5겹 교차검증(5-fold Cross Validation)을 통하여 적용된 기법의 성능을 평가하여, 실제 전력 사용량과 예측 결과를 비교한다.

머신러닝을 사용한 탄성파 자료 보간법 기술 연구 동향 분석 (Research Trend analysis for Seismic Data Interpolation Methods using Machine Learning)

  • 배우람;권예지;하완수
    • 지구물리와물리탐사
    • /
    • 제23권3호
    • /
    • pp.192-207
    • /
    • 2020
  • 탄성파 탐사를 수행할 때 경제적, 환경적 제약 또는 탐사 장비의 문제 등에 의해 탄성파 자료의 일부가 규칙적 또는 불규칙적으로 손실되는 경우가 발생하게 된다. 이러한 자료 손실은 탄성파 자료 처리와 해석 결과에 부정적인 영향을 주기 때문에 사라진 탄성파 자료를 복원할 필요가 있다. 탄성파 자료 복원을 위해 재탐사 또는 추가적인 탐사를 진행하는 경우 시간적, 경제적 비용이 발생하기 때문에, 많은 연구자들이 사라진 탄성파 자료를 정확히 복원하기 위한 보간 기법 연구를 진행해왔다. 최근에는 머신러닝 기술 발달에 따라 머신러닝 기법을 활용한 연구들이 진행되고 있고, 다양한 머신러닝 기술들 중에서도 서포트 벡터 회귀, 오토인코더, 유넷, 잔차넷, 생성적 적대 신경망 등의 알고리즘을 활용한 탄성파 자료의 보간 연구가 활발하게 진행되고 있다. 이 논문에서는 이러한 연구들을 조사하고 분석하여 복잡한 신경망 모델뿐 아니라 상대적으로 구조가 간단한 서포트 벡터 회귀 모델을 통해서도 뛰어난 보간 결과를 얻을 수 있다는 것을 확인했다. 추후 머신러닝 기법들을 사용하는 탄성파 자료 보간 연구들에서 오픈소스로 공개된 실제 자료를 이용하며 데이터 증식, 전이학습, 기존 기법을 이용한 규제 등의 기술을 활용하면 탄성파 자료 보간 성능을 향상시킬 수 있을 것으로 기대된다.

PREDICTION OF SEVERE ACCIDENT OCCURRENCE TIME USING SUPPORT VECTOR MACHINES

  • KIM, SEUNG GEUN;NO, YOUNG GYU;SEONG, POONG HYUN
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.74-84
    • /
    • 2015
  • If a transient occurs in a nuclear power plant (NPP), operators will try to protect the NPP by estimating the kind of abnormality and mitigating it based on recommended procedures. Similarly, operators take actions based on severe accident management guidelines when there is the possibility of a severe accident occurrence in an NPP. In any such situation, information about the occurrence time of severe accident-related events can be very important to operators to set up severe accident management strategies. Therefore, support systems that can quickly provide this kind of information will be very useful when operators try to manage severe accidents. In this research, the occurrence times of several events that could happen during a severe accident were predicted using support vector machines with short time variations of plant status variables inputs. For the preliminary step, the break location and size of a loss of coolant accident (LOCA) were identified. Training and testing data sets were obtained using the MAAP5 code. The results show that the proposed algorithm can correctly classify the break location of the LOCA and can estimate the break size of the LOCA very accurately. In addition, the occurrence times of severe accident major events were predicted under various severe accident paths, with reasonable error. With these results, it is expected that it will be possible to apply the proposed algorithm to real NPPs because the algorithm uses only the early phase data after the reactor SCRAM, which can be obtained accurately for accident simulations.

Hybrid Internet Business Model using Evolutionary Support Vector Regression and Web Response Survey

  • Jun, Sung-Hae
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.408-411
    • /
    • 2006
  • Currently, the nano economy threatens the mass economy. This is based on the internet business models. In the nano business models based on internet, the diversely personalized services are needed. Many researches of the personalization on the web have been studied. The web usage mining using click stream data is a tool for personalization model. In this paper, we propose an internet business model using evolutionary support vector machine and web response survey as a web usage mining. After analyzing click stream data for web usage mining, a personalized service model is constructed in our work. Also, using an approach of web response survey, we improve the performance of the customers' satisfaction. From the experimental results, we verify the performance of proposed model using two data sets from KDD Cup 2000 and our web server.

  • PDF

단독주택가격 추정을 위한 기계학습 모형의 응용 (Application of machine learning models for estimating house price)

  • 이창로;박기호
    • 대한지리학회지
    • /
    • 제51권2호
    • /
    • pp.219-233
    • /
    • 2016
  • 수리 또는 계량적 모형을 사용하는 사회과학연구에서 분석의 초점은 종속변수와 설명변수의 관계를 밝히는 것, 즉 설명 중심의 모형(explanatory modeling)이 지금까지 주류를 이루었다. 반면 예측(prediction) 능력 제고에 초점을 맞춘 분석은 드물었다. 본 연구에서는 이론 및 가설을 검증하거나 변수 간의 관계를 밝히는 설명 중심의 모형이 아니라 신규 관찰치에 대한 예측 오차를 줄이는, 예측 중심의 비모수 모형(non-parametric model)을 검토하였다. 서울시 강남구를 사례지역으로 선정한 후, 2011년부터 2014년까지 신고된 단독주택 실거래가를 기초자료로 하여 주택가격을 추정하였다. 적용한 비모수 모형은 기계학습 분야에서 제시된 일반가산모형(generalized additive model), 랜덤 포리스트, MARS(multivariate adaptive regression splines), SVM(support vector machines) 등이며 비교적 최근에 개발된 MARS나 SVM의 예측력이 뛰어남을 확인할 수 있었다. 마지막으로 이러한 비모수 모형에 공간적 자기상관성을 추가적으로 반영한 결과, 모형의 가격 예측력이 보다 개선되었음을 알 수 있었다. 본 연구를 계기로 그간 모수 모형에 집중되었던 부동산 가격추정 방법론이 비모수 모형으로 확대 및 다양화되기를 기대한다.

  • PDF

Intelligent prediction of engineered cementitious composites with limestone calcined clay cement (LC3-ECC) compressive strength based on novel machine learning techniques

  • Enming Li;Ning Zhang;Bin Xi;Vivian WY Tam;Jiajia Wang;Jian Zhou
    • Computers and Concrete
    • /
    • 제32권6호
    • /
    • pp.577-594
    • /
    • 2023
  • Engineered cementitious composites with calcined clay limestone cement (LC3-ECC) as a kind of green, low-carbon and high toughness concrete, has recently received significant investigation. However, the complicated relationship between potential influential factors and LC3-ECC compressive strength makes the prediction of LC3-ECC compressive strength difficult. Regarding this, the machine learning-based prediction models for the compressive strength of LC3-ECC concrete is firstly proposed and developed. Models combine three novel meta-heuristic algorithms (golden jackal optimization algorithm, butterfly optimization algorithm and whale optimization algorithm) with support vector regression (SVR) to improve the accuracy of prediction. A new dataset about LC3-ECC compressive strength was integrated based on 156 data from previous studies and used to develop the SVR-based models. Thirteen potential factors affecting the compressive strength of LC3-ECC were comprehensively considered in the model. The results show all hybrid SVR prediction models can reach the Coefficient of determination (R2) above 0.95 for the testing set and 0.97 for the training set. Radar and Taylor plots also show better overall prediction performance of the hybrid SVR models than several traditional machine learning techniques, which confirms the superiority of the three proposed methods. The successful development of this predictive model can provide scientific guidance for LC3-ECC materials and further apply to such low-carbon, sustainable cement-based materials.