Fig. 1. Logistic regression model development using KNIME
Fig. 2. Severity-adjusted mortality rate model for acute stroke patients using decision tree
Fig. 3. Neural network model development using KNIME
Fig. 4. Support vector machine model development using KNIME
Table 1. Definition of variables
Table 2. General characteristics of acute stroke inpatients
Table 3. Distribution of principal diagnosis
Table 4. Distribution of Charlson comorbidity index
Table 5. Distribution of comorbidity disease by Elixhauser comorbidity index
Table 6. Distribution of comorbidity disease by clinical classification software category
Table 7. Logistic regression model assessment using AUC
Table 8. Severity-adjusted mortality rate model for acute stroke patients using logistic regression
Table 9. Decision Tree model assessment using AUC
Table 10. Neural network model assessment using AUC
Table 11. Support vector machine model assessment using AUC
References
- J. H. Im, K. S. Lee, K. Y. Kim, N. S. Hong, S. W. Lee, H. J. Bae, "Follow-up study on mortality in Korean stroke patients", J Korean Med Assoc, Vol. 54 No. 11 pp. 1199-1208, 2011. DOI: https://dx.doi.org/10.5124/jkma.2011.54.11.1199
- K. J. Kim, M. Heo, I. A. Chun, H. J. Jun, J. S. Lee, H, Jegal, "The re-lationship between stroke and quality of life in Korean adults: based on the 2010 Korean community health survey". Journal of Physical Therapy Science, Vol. 27, No. 1, pp. 309-312, 2015. https://doi.org/10.1589/jpts.27.309
- E. H. Jeong, O. T, M. S, B. R. Kim, J. Lee, "Relationship between Comorbid Cognitive Impairment and Functional Outcomes in Stroke Patients with Spatial Neglect", Brain & Neuro Rehabilitation, Vol. 9, No. 1, 2016.
- H. Rubin, P. Pronovost, G. Diette, "The advantages and disadvantages of process-based measure of health care quality", International Journal for Quality in Health Care, Vol. 13, pp. 469-474, 2001. DOI: https://dx.doi.org/10.1093/intqhc/13.6.469
- J. Y. Yoon, J. Y. Lee, "Development of Outcome Indicators of Urinary Incontinence for Quality Evaluation in Long Term Care Hospitals", J Korean Acad Nurs. Vol. 40, No. 1, pp. 110-118, 2010. DOI: https://dx.doi.org/10.4040/jkan.2010.40.1.110
- J. H. Park, Y. M. Kim, S. S. Kim, W. J. Kim, S. H. K, "Comparison of Hospital Standardized Mortality Ratio Using National Hospital Discharge Injury Data", Journal of the Korea Academia-Industrial cooperation Society, Vol. 13, No. 4 pp. 1739-1750, 2012. DOI: https://dx.doi.org/10.5762/KAIS.2012.13.4.1739
- A. Elixhauser, C. Steiner, D. Harris, R. Coffey, "Comorbidity measures for use with administrative data", Med Care, Vol. 36, pp. 8-27, 1998. DOI: https://dx.doi.org/10.1097/00005650-199801000-00004
- C. Y. Wang, Y. S. Lin, C. Tzao, H. C. Lee, M. H. Huang, W. H. Hsu, H. S. Hsu, "Comparison of Charlson comorbidity index and Kaplan-Feinstein index in patients with stage I lung cancer after surgical resection", European Journal of Cardio-Thoracic Surgery, Vol.32, No.1 pp. 877-881, December 2007. DOI: https://dx.doi.org/10.1016/j.ejcts.2007.09.008
- M. Charlson, P. Pompei, K. Ales, C. MacKenzie, "A new method of classifying prognostic comorbidity in longitudinal studies: development and validation", J Chronic Dis, Vol. 40, pp. 373-383, 1987. DOI: https://dx.doi.org/10.1016/0021-9681(87)90171-8
- S. H. Kang, "Analysis of LOS variance-The results of Korean National Hospital Discharge In-depth Injury Survey 2004-2006", Public health weekly report, KCDC, 2, pp. 587-866, 2009.
- Y. M. Kim, "A study on analysis of factors on in-hospital mortality for community-acquired pneumonia", Journal of the Korean Data & Information Science Society, Vol. 22, No. 3, pp. 389-400, 2011.
- M. H. Nam, S. S. Kim, I. S. Park, S. H. Kang, W. J. Kim, S. H. Choi, H. K. Jo, Y. T. Kim, S. O. Hong, "A Study on Utilization of non-residential areal in Operation patient", Journal of the Korea Academia-Industrial cooperation Society, Vol. 11, No. 6, pp. 2078-2087, 2010. DOI: https://dx.doi.org/10.5762/KAIS.2010.11.6.2078
- Australia, National Health Data Committee, National Health Data Dictionary, Version 12, AIHW, 2003.
- http://mchp-appserv.cpe.umanitoba.ca/viewConcept.php? printer=Y&conceptID=1098
- J. H. Lee, J. K. Choi, S. N. Jeong, S. H. Choi. "Charlson comorbidity index as a predictor of periodontal disease in elderly participants" J Periodontal Implant Sci, Vol. 48, No. 2, pp. 92-102, 2018. https://doi.org/10.5051/jpis.2018.48.2.92
- http://mchp-appserv.cpe.umanitoba.ca/viewConcept.php?printer=Y&conceptID=1436
- https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
- Y. H. Choi, Y. J. Kim, S. O. Hong, "Development of Severity-adjusted Length of Stay in Ischemic Heart Disease", Journal of the Korean Data Analysis Society, Vol. 17, No. 1, pp. 407-421, 2015.
- K. H. Kim, J. H. Im, "Mortality of Stroke Patients Based on Charlson comorbidity index", Journal of the Korea Contents Association, Vol. 16, No.3, pp. 22-32, 2016. DOI: https://dx.doi.org/10.5392/JKCA.2016.16.03.022
- J. George, S. Douglas, P. Wagner, F. Alfred, "Comparison of the performance of two comorbidity measures, with and without information from prior hospitalizations.", Medical Care, Vol. 39, No. 7, pp. 727-739, 2001. https://doi.org/10.1097/00005650-200107000-00009
- D. A. Southern, H. Quan, W. A. Ghali, "Comparison of the Elixhauser and Charlson/Deyo Methods of Comorbidity Measurement in Administrative Data", Medical Care, Vol. 42, No. 4, pp. 355-360, 2004. DOI: https://dx.doi.org/10.1097/01.mlr.0000118861.56848.ee
- P. R. Hachesu, M. Ahmadi, S. Alizadeh, F. Sadoughi, "Use of data mining techniques to determine and predict length of stay of cardiac patients", Healthc Inform Res Vol. 19, No. 2, pp. 121-9, 2013. DOI: https://dx.doi.org/10.4258/hir.2013.19.2.121
- L. Tapak, H. Mahjub, O. Hamidi, J. Poorolajal, "Real-Data Comparison of Data Mining Methods in Prediction of Diabetes in Iran", Healthc Inform Res. Vol. 19, No. 3, pp. 177-185, 2013. DOI: https://dx.doi.org/10.4258/hir.2013.19.3.177
- C. Lehmann, T. Koenig, V. Jelic, L. Prichep, "Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity (EEG)", J Neurosci Methods, Vol. 161, No. 2, pp. 342-350, 2007. DOI: https://dx.doi.org/10.1016/j.jneumeth.2006.10.023