• 제목/요약/키워드: Support Vector Clustering

검색결과 90건 처리시간 0.042초

MPEG-7 시각 기술자와 멀티 클래스 SVM을 이용한 의료 영상 분류와 검색 (Medical Image Classification and Retrieval using MPEG-7 Visual Descriptors and Multi-Class SVM(Support Vector Machine))

  • 심정희;고병철;남재열
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 춘계학술발표대회
    • /
    • pp.135-138
    • /
    • 2008
  • 본 논문은 의료 영상에 대한 효과적인 분류와 검색을 위한 알고리즘을 제안한다. 영상 분류와 검색을 위해서 MPEG-7 표준 기술자인 색 구조 기술자와 경계선 히스토그램 기술자를 사용해 영상들에 대한 특징 값을 추출한다. 이렇게 구해진 특징 값들을 의료 영상의 분류와 검색에 적용해 본 결과 비교적 낮은 성능을 보여줌을 확인하고 앞서 구해진 특징 값들을 교사 학습 방법인 SVM(Support Vector Machine)과 비교사 학습 방법인 FCM(Fuzzy C-means Clustering)에 적용시켰다. 기존 연구에서는 SVM과 FCM의 통합으로 의료 영상에 대한 분류와 검색을 시행하였지만 본 논문에서 실험한 결과 SVM과 MPEG-7 시각 기술자 중에 하나인 EHD(Edge Histogram Descriptor)를 가중치 선형 결합하여 실험한 결과가 더 정확한 분류와 높은 검색 성능을 나타냄을 확인하였다.

클러스터링 해쉬 테이블을 이용한 다차원 선박 USN 스트림 데이터의 효율적인 처리 (Efficient Processing of Multidimensional Vessel USN Stream Data using Clustering Hash Table)

  • 송병호;오일환;이성로
    • 대한전자공학회논문지SP
    • /
    • 제47권6호
    • /
    • pp.137-145
    • /
    • 2010
  • 디지털 선박에서는 선박 내의 각종 센서로부터 측정된 디지털 데이터에 대한 정확하고 에너지 효율적인 관리가 필요하다. 그러나, 센서 네트워크에서 대용량 스트림 데이터를 제한된 네트워크, 전력, 프로세서를 이용하여 모든 센서 데이터를 전송하고 분석하는 것은 어렵고 효율적이지 못하다. 그러므로, 연속적으로 입력되는 데이터를 사전에 분류하여 특성에 따라 선택적으로 데이터를 처리하는 데이터 분류 기법이 요구된다. 본 논문에서는 디지털 선박 내에 다수 개의 센서(온도, 습도, 조도, 음성 센서)를 배치하고 효율적인 입력 스트림 처리를 위해서 슬라이딩 윈도우 기반으로 다중 Support Vector Machine(SVM) 알고리즘을 이용하여 사전 분류(pre-clustering)한 후 요약된 정보를 해쉬 테이블로 관리하는 효율적인 처리 기법을 제안한다. 해쉬테이블을 이용하여 다차원 스트림 데이터의 저장될 레코드 순서를 빠르게 찾아 저장 및 검색함으로서 처리 속도가 향상되고 메모리에 해쉬 테이블 만을 유지하면 되므로 메모리 사용량이 감소한다. 35,912개의 데이터 집합을 사용하여 실험한 결과 제안 기법의 정확도와 처리 성능이 향상되었다.

The combination of a histogram-based clustering algorithm and support vector machine for the diagnosis of osteoporosis

  • Kavitha, Muthu Subash;Asano, Akira;Taguchi, Akira;Heo, Min-Suk
    • Imaging Science in Dentistry
    • /
    • 제43권3호
    • /
    • pp.153-161
    • /
    • 2013
  • Purpose: To prevent low bone mineral density (BMD), that is, osteoporosis, in postmenopausal women, it is essential to diagnose osteoporosis more precisely. This study presented an automatic approach utilizing a histogram-based automatic clustering (HAC) algorithm with a support vector machine (SVM) to analyse dental panoramic radiographs (DPRs) and thus improve diagnostic accuracy by identifying postmenopausal women with low BMD or osteoporosis. Materials and Methods: We integrated our newly-proposed histogram-based automatic clustering (HAC) algorithm with our previously-designed computer-aided diagnosis system. The extracted moment-based features (mean, variance, skewness, and kurtosis) of the mandibular cortical width for the radial basis function (RBF) SVM classifier were employed. We also compared the diagnostic efficacy of the SVM model with the back propagation (BP) neural network model. In this study, DPRs and BMD measurements of 100 postmenopausal women patients (aged >50 years), with no previous record of osteoporosis, were randomly selected for inclusion. Results: The accuracy, sensitivity, and specificity of the BMD measurements using our HAC-SVM model to identify women with low BMD were 93.0% (88.0%-98.0%), 95.8% (91.9%-99.7%) and 86.6% (79.9%-93.3%), respectively, at the lumbar spine; and 89.0% (82.9%-95.1%), 96.0% (92.2%-99.8%) and 84.0% (76.8%-91.2%), respectively, at the femoral neck. Conclusion: Our experimental results predict that the proposed HAC-SVM model combination applied on DPRs could be useful to assist dentists in early diagnosis and help to reduce the morbidity and mortality associated with low BMD and osteoporosis.

빅 데이터 환경에서 계층적 문서 유형 분류를 위한 클러스터링 기반 다중 SVM 모델 (Multi-class Support Vector Machines Model Based Clustering for Hierarchical Document Categorization in Big Data Environment)

  • 김영수;이병엽
    • 한국콘텐츠학회논문지
    • /
    • 제17권11호
    • /
    • pp.600-608
    • /
    • 2017
  • 최근 인터넷의 급격한 확장에 따른 정보의 양이 기하급수적으로 증가하고 있다. 그러나 실제 사용자에게 필요한 정보는 극히 일부분으로 사용자가 원하는 정보를 찾는데 까지는 부가적인 시간과 노력이 요구된다. 따라서 검색어로 검색된 문서에 대한 유사도 평가를 통한 계층적 유사 정보와 검색 우선순위에 대한 정보를 제공할 필요성이 있다. 이를 위해서 검색어를 구성하고 있는 키워드의 동시 발생 빈도를 고려한 검색 문서에 대한 유사도를 기반으로 문서 클러스터를 구성하고 SVM을 적용한 빅 데이터 기반 계층적 유형 분류 모델을 제안한다. 계층적 분류방법과 SVM 분류기의 결합은 문서의 계층이 기하급수적으로 늘어나는 웹 문서의 경우에 높은 성능을 얻을 수 있다. 제안된 모델은 정확하고 신속한 검색을 제공하는 정보검색시스템의 응용 모델로 활용될 수 있다.

고차원 데이터 처리를 위한 SVM기반의 클러스터링 기법 (SVM based Clustering Technique for Processing High Dimensional Data)

  • 김만선;이상용
    • 한국지능시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.816-820
    • /
    • 2004
  • 클러스터링은 데이터 집합을 유사한 데이터 개체들의 클러스터들로 분할하여 데이터 속에 존재하는 의미 있는 정보를 얻는 과정이다. 클러스터링의 주요 쟁점은 고차원 데이터를 효율적으로 클러스터링하는 것과 최적화 문제를 해결하는 것이다. 본 논문에서는 SVM(Support Vector Machines)기반의 새로운 유사도 측정법과 효율적으로 클러스터의 개수를 생성하는 방법을 제안한다. 고차원의 데이터는 커널 함수를 이용해 Feature Space로 매핑시킨 후 이웃하는 클러스터와의 유사도를 측정한다. 이미 생성된 클러스터들은 측정된 유사도 값과 Δd 임계값에 의해서 원하는 클러스터의 개수를 얻을 수 있다. 제안된 방법을 검증하기 위하여 6개의 UCI Machine Learning Repository의 데이터를 사용한 결과, 제시된 클러스터의 개수와 기존의 연구와 비교하여 향상된 응집도를 얻을 수 있었다.

Efficient Sign Language Recognition and Classification Using African Buffalo Optimization Using Support Vector Machine System

  • Karthikeyan M. P.;Vu Cao Lam;Dac-Nhuong Le
    • International Journal of Computer Science & Network Security
    • /
    • 제24권6호
    • /
    • pp.8-16
    • /
    • 2024
  • Communication with the deaf has always been crucial. Deaf and hard-of-hearing persons can now express their thoughts and opinions to teachers through sign language, which has become a universal language and a very effective tool. This helps to improve their education. This facilitates and simplifies the referral procedure between them and the teachers. There are various bodily movements used in sign language, including those of arms, legs, and face. Pure expressiveness, proximity, and shared interests are examples of nonverbal physical communication that is distinct from gestures that convey a particular message. The meanings of gestures vary depending on your social or cultural background and are quite unique. Sign language prediction recognition is a highly popular and Research is ongoing in this area, and the SVM has shown value. Research in a number of fields where SVMs struggle has encouraged the development of numerous applications, such as SVM for enormous data sets, SVM for multi-classification, and SVM for unbalanced data sets.Without a precise diagnosis of the signs, right control measures cannot be applied when they are needed. One of the methods that is frequently utilized for the identification and categorization of sign languages is image processing. African Buffalo Optimization using Support Vector Machine (ABO+SVM) classification technology is used in this work to help identify and categorize peoples' sign languages. Segmentation by K-means clustering is used to first identify the sign region, after which color and texture features are extracted. The accuracy, sensitivity, Precision, specificity, and F1-score of the proposed system African Buffalo Optimization using Support Vector Machine (ABOSVM) are validated against the existing classifiers SVM, CNN, and PSO+ANN.

복합 문서의 의미적 분해를 통한 다중 벡터 문서 임베딩 방법론 (Multi-Vector Document Embedding Using Semantic Decomposition of Complex Documents)

  • 박종인;김남규
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.19-41
    • /
    • 2019
  • 텍스트 데이터에 대한 다양한 분석을 위해 최근 비정형 텍스트 데이터를 구조화하는 방안에 대한 연구가 활발하게 이루어지고 있다. doc2Vec으로 대표되는 기존 문서 임베딩 방법은 문서가 포함한 모든 단어를 사용하여 벡터를 만들기 때문에, 문서 벡터가 핵심 단어뿐 아니라 주변 단어의 영향도 함께 받는다는 한계가 있다. 또한 기존 문서 임베딩 방법은 하나의 문서가 하나의 벡터로 표현되기 때문에, 다양한 주제를 복합적으로 갖는 복합 문서를 정확하게 사상하기 어렵다는 한계를 갖는다. 본 논문에서는 기존의 문서 임베딩이 갖는 이러한 두 가지 한계를 극복하기 위해 다중 벡터 문서 임베딩 방법론을 새롭게 제안한다. 구체적으로 제안 방법론은 전체 단어가 아닌 핵심 단어만 이용하여 문서를 벡터화하고, 문서가 포함하는 다양한 주제를 분해하여 하나의 문서를 여러 벡터의 집합으로 표현한다. KISS에서 수집한 총 3,147개의 논문에 대한 실험을 통해 복합 문서를 단일 벡터로 표현하는 경우의 벡터 왜곡 현상을 확인하였으며, 복합 문서를 의미적으로 분해하여 다중 벡터로 나타내는 제안 방법론에 의해 이러한 왜곡 현상을 보정하고 각 문서를 더욱 정확하게 임베딩할 수 있음을 확인하였다.

개선된 신경망 알고리즘을 이용한 영상 클러스터링 (Image Clustering using Improved Neural Network Algorithm)

  • 박상성;이만희;유헌우;문호석;장동식
    • 제어로봇시스템학회논문지
    • /
    • 제10권7호
    • /
    • pp.597-603
    • /
    • 2004
  • In retrieving large database of image data, the clustering is essential for fast retrieval. However, it is difficult to cluster a number of image data adequately. Moreover, current retrieval methods using similarities are uncertain of retrieval accuracy and take much retrieving time. In this paper, a suggested image retrieval system combines Fuzzy ART neural network algorithm to reinforce defects and to support them efficiently. This image retrieval system takes color and texture as specific feature required in retrieval system and normalizes each of them. We adapt Fuzzy ART algorithm as neural network which receive normalized input-vector and propose improved Fuzzy ART algorithm. The result of implementation with 200 image data shows approximately retrieval ratio of 83%.

SVM을 이용한 스테레오 비전 기반의 사람 탐지 (Stereo Vision based Human Detection using SVM)

  • 정상준;송재복
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.117-118
    • /
    • 2007
  • A robot needs a human detection algorithm for interaction with a human. This paper proposes a method that finds people using a SVM (support vector machine) classifier and a stereo camera. Feature vectors of SVM are extracted by HoG (histogram of gradient) within images. After training extracted vectors from the clustered images, the SVM algorithm creates a classifier for human detection. Each candidate for a human in the image is generated by clustering of depth information from a stereo camera and the candidate is evaluated by the classifier. When compared with the existing method of creating candidates for a human, clustering reduces computational time. The experimental results demonstrate that the proposed approach can be executed in real time.

  • PDF

Decision support system for underground coal pillar stability using unsupervised and supervised machine learning approaches

  • Kamran, Muhammad;Shahani, Niaz Muhammad;Armaghani, Danial Jahed
    • Geomechanics and Engineering
    • /
    • 제30권2호
    • /
    • pp.107-121
    • /
    • 2022
  • Coal pillar assessment is of broad importance to underground engineering structure, as the pillar failure can lead to enormous disasters. Because of the highly non-linear correlation between the pillar failure and its influential attributes, conventional forecasting techniques cannot generate accurate outcomes. To approximate the complex behavior of coal pillar, this paper elucidates a new idea to forecast the underground coal pillar stability using combined unsupervised-supervised learning. In order to build a database of the study, a total of 90 patterns of pillar cases were collected from authentic engineering structures. A state-of-the art feature depletion method, t-distribution symmetric neighbor embedding (t-SNE) has been employed to reduce significance of actual data features. Consequently, an unsupervised machine learning technique K-mean clustering was followed to reassign the t-SNE dimensionality reduced data in order to compute the relative class of coal pillar cases. Following that, the reassign dataset was divided into two parts: 70 percent for training dataset and 30 percent for testing dataset, respectively. The accuracy of the predicted data was then examined using support vector classifier (SVC) model performance measures such as precision, recall, and f1-score. As a result, the proposed model can be employed for properly predicting the pillar failure class in a variety of underground rock engineering projects.