• Title/Summary/Keyword: Support Plate

Search Result 422, Processing Time 0.022 seconds

License Plate Detection and Recognition Algorithm using Deep Learning (딥러닝을 이용한 번호판 검출과 인식 알고리즘)

  • Kim, Jung-Hwan;Lim, Joonhong
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.642-651
    • /
    • 2019
  • One of the most important research topics on intelligent transportation systems in recent years is detecting and recognizing a license plate. The license plate has a unique identification data on vehicle information. The existing vehicle traffic control system is based on a stop and uses a loop coil as a method of vehicle entrance/exit recognition. The method has the disadvantage of causing traffic jams and rising maintenance costs. We propose to exploit differential image of camera background instead of loop coil as an entrance/exit recognition method of vehicles. After entrance/exit recognition, we detect the candidate images of license plate using the morphological characteristics. The license plate can finally be detected using SVM(Support Vector Machine). Letter and numbers of the detected license plate are recognized using CNN(Convolutional Neural Network). The experimental results show that the proposed algorithm has a higher recognition rate than the existing license plate recognition algorithm.

A Study on Bending Behavior of Tunnel Support (터널지보의 굽힘거동에 관한 연구)

  • Lee, Dong-Woo;Cho, Seok-Swoo;Joo, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.896-902
    • /
    • 2007
  • The tunnel stability concerned with safety is very important in coal production process. The tunnel supports made by the GI beam has been used in domestic coal mine tunnels, and the GI beam was connected with another by the fish plate. It is necessary to analysis for the bending problems of the fish plate due to the rock pressure in some domestic mine tunnels. Therefore, this study proposes the application possibility of the optimization algorithms for the problem searching a load condition that bring about bending problem in tunnels. Consequently, in order to investigate the load conditions, desirability function as one of the optimization methods to study the bending behavior of tunnel supports was applied.

Learning-based approach for License Plate Recognition System (학습 기반의 자동차 번호판 인식 시스템)

  • 김종배;김갑기;김광인;박민호;김항준
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • This paper presents a learning-based approach for the construction of license Plate recognition system. The system consist of three modules. They are respectively, car detection module, license plate recognition module and recognition module. Car detection module detects a car in the given image sequence obtained from the camera with simple color-based approach. Segmentation module extracts the license plate in detect car image using neural network as filters for analyzing the color and texture properties of license plate. Recognition module then reads characters in detected license plate with support vector machine (SVM)-based characters recognizer. The system has been tested from parking lot and tollgate, etc. and have show the following performances on average: Car detect rate 100%, segmentation rate 97.5%, and character recognition rate about 97.2%. Overall system performances is 94.7% and processing time is one sec. Then our propose system does well using real world.

  • PDF

Thermal-fluid-structure coupling analysis on plate-type fuel assembly under irradiation. Part-II Mechanical deformation and thermal-hydraulic characteristics

  • Li, Yuanming;Ren, Quan-yao;Yuan, Pan;Su, Guanghui;Yu, Hongxing;Zheng, Meiyin;Wang, Haoyu;Wu, Yingwei;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1556-1568
    • /
    • 2021
  • The plate-type fuel assembly adopted in nuclear research reactor suffers from complicated effect induced by non-uniform irradiation, which might affect stress conditions, mechanical behaviors and thermal-hydraulic performance of the fuel assembly. This paper is the Part II work of a two-part study devoted to analyzing the complex unique mechanical deformation and thermal-hydraulic characteristics for the typical plate-type fuel assembly under irradiation effect, which is on the basis of developed and verified numerical thermal-fluid-structure coupling methodology under irradiation in Part I of this work. The mechanical deformation, thermal-hydraulic performance and Mises stress have been analyzed for the typical plate-type fuel assembly consisting of support plates under non-uniform irradiation. It was interesting to observe that: the plate-type fuel assembly including the fuel plates and support plates tended to bend towards the location with maximum fission rate; the hot spots in the fuel foil appeared at the location with maximum thickness increment; the maximum Mises stress of fuel foil was located at the adjacent location with the maximum plate thickness increment et al.

A Study on the Analysis toy Perforated Plate with Irregular Section (불규칙 단면을 갖는 유공 탄성 평판의 해석에 관한 연구)

  • 이성용;장명호;김재열
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.34-41
    • /
    • 1999
  • This paper is focused on numerical analysis for perforated plate with irregular section based on Kirchhoff's fundamental equations of a circular plate. The dimensions of analysis model are as following; 1) radius:100cm, 2) hole in center:20cm, 3)thickness: l0cm and variable and have a simple support in boundary. The theoretical results are compared with data obtained by the F.2.M analysis. Both data have good agreement with each other.

  • PDF

Use of Graphite Plate for Homogeneous Sample Preparation in Matrix/Surface-assisted Laser Desorption and Ionization of Polypropyleneglycol and Polystyrene

  • Kim, Jeong Hwan;Gang, Wi Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.401-404
    • /
    • 2000
  • Matrix/Surface-assisted laser desorption/ionization (M/SALDI) mass spectrometry of polypropylene glycol and polystyrene, directly deposited on graphite plate, is demonstrated. Graphite plate is effective both as an en-ergy transfer medium and robu st sampling support for LDI of polymers. Mass spectra ofpolymers can be easily obtained due to homogeneous distribution on graphite surface and their ion signals are long-lived by large ef-fective desorption volume enough to investigate M/SALDI process.

Method using XFEM and SVR to predict the fatigue life of plate-like structures

  • Jiang, Zhansi;Xiang, Jiawei
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.455-462
    • /
    • 2020
  • The hybrid method using the extended finite element method (XFEM) and the forward Euler approach is widely employed to predict the fatigue life of plate structures. Due to the accuracy of the forward Euler approach is determined by a small step size, the performance of fatigue life prediction of the hybrid method is not agreeable. Instead the forward Euler approach, a prediction method using midpoint method and support vector regression (SVR) is presented to evaluate the stress intensity factors (SIFs) and the fatigue life. Firstly, the XFEM is employed to calculate the SIFs with given crack sizes. Then use the history of SIFs as a function of either number of fatigue life cycles or crack sizes within the current cycle to build a prediction model. Finally, according to the prediction model predict the SIFs at different crack sizes or different cycles. Three numerical cases composed by a homogeneous plate with edge crack, a composite plate with edge crack and center crack are introduced to verify the performance of the proposed method. The results show that the proposed method enables large step sizes without sacrificing accuracy. The method is expected to predict the fatigue life of complex structures.

Residual stress distribution analysis in a J-groove dissimilar metal welded component of a reactor vessel bottom head using simulation and experiment

  • Dong-Hyun Ahn;Jong Yeon Lee;Min-Jae Choi;Jong Min Kim;Sung-Woo Kim;Wanchuck Woo
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.506-519
    • /
    • 2024
  • To simulate the verification process using materials from a decommissioned reactor, a mock-up of the bottom-mounted instrument nozzle in the Kori 1 reactor, where the nozzle was attached to a plate by J-groove dissimilar metal welding, was fabricated. The mock-up distortion was quantified by measuring the plate surface displacement after welding. The residual stresses formed on the support plate surface and the inner surface of the nozzle were then analyzed using the hole-drilling method, contour method, and neutron diffraction. Welding simulations were performed using a 3D finite element method to validate the measured results. The measured and computed stress distributions on the support plate exhibited reasonable agreement. Conversely, the stresses on the inside of the nozzle were found to have an indisputable difference in the contour method and neutron diffraction measurements, which demonstrated strong tensile and compressive hoop stresses, respectively. The possible origins of such differences were investigated and we have provided some suggestions for a precise evaluation in the simulation. This study is expected to be useful in future research on decommissioned reactors.

Analysis of Buckling Causes and Establishment of Reinforcement Method for Support of Plate Girder Bridge (플레이트 거더교 지점부의 좌굴발생 원인분석 및 보강방안 수립)

  • Ok, Jae-Ho;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.520-526
    • /
    • 2019
  • I-type girders are widely applied as very economical sections in plate girder bridges. There has been research on developing composite laminated panels, curved plates reinforced with closed-end ribs, and new forms of ribs and compression flanges for steel box girders. However, there is a limitation in analyzing the exact cause of local buckling caused by an I-type girder's webs. Therefore, an I-type girder's web was modeled using the finite element analysis program LUSAS 17.0 before and after reinforcement. We checked for the minimum thickness criteria presented in the Korea highway bridge design code, and the cause of buckling after performing a linear elastic buckling analysis of dead and live loads was analyzed. Before reinforcement, an eigenvalue (λ1) at the 1st mode was 0.7025, the critical buckling load was smaller than the applied load, and there is a buckling. After reinforcement, when applying vertical and horizontal stiffeners to the web part of the girder at support, a Nodal line was formed, the eigenvalue was 1.5272, and buckling stability was secured. To improve buckling trace of the girder at the support, an additional plate was applied to the web at the support to ensure visual and structural safety, but buckling occurs at center of web. The eigenvalue (λ1) was 3.5299, and this method is efficient for reinforcing the web of the support.

A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass

  • Draiche, Kada;Tounsi, Abdelouahed;Khalfi, Y.
    • Steel and Composite Structures
    • /
    • v.17 no.1
    • /
    • pp.69-81
    • /
    • 2014
  • The novelty of this paper is the use of trigonometric four variable plate theory for free vibration analysis of laminated rectangular plate supporting a localized patch mass. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The Hamilton's Principle, using trigonometric shear deformation theory, is applied to simply support rectangular plates. Numerical examples are presented to show the effects of geometrical parameters such as aspect ratio of the plate, size and location of the patch mass on natural frequencies of laminated composite plates. It can be concluded that the proposed theory is accurate and simple in solving the free vibration behavior of laminated rectangular plate supporting a localized patch mass.