• Title/Summary/Keyword: Support Plate

Search Result 422, Processing Time 0.023 seconds

Numerical Analysis of the Effect of Hole Size Change in Lower-Support-Structure-Bottom Plate on the Reactor Core-Inlet Flow-Distribution (하부지지구조물 바닥판 구멍크기 변경이 원자로 노심 입구 유량분포에 미치는 영향에 관한 수치해석)

  • Lee, Gong Hee;Bang, Young Seok;Cheong, Ae Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.905-911
    • /
    • 2015
  • In this study, to examine the effect of a hole size change(smaller hole diameter) in the outer region of the lower-support-structure-bottom plate(LSSBP) on the reactor core-inlet flow-distribution, simulations were conducted with the commercial CFD software, ANSYS CFX R.15. The predicted results were compared with those of the original LSSBP. Through these comparisons, it was concluded that a more uniform distribution of the mass flow rate at the core-inlet plane could be obtained by reducing the hole size in the outer region of the LSSBP. Therefore, from the nuclear regulatory perspective, design change of the hole pattern in the outer region of the LSSBP may be desirable in terms of improving both the mechanical integrity of the fuel assembly and the core thermal margin.

Design of Pull Box Members on the Landing Pier Using Finite Element Analysis of a Steel Plate (강재 플레이트 유한요소해석을 이용한 잔교 상부의 풀 박스 부재의 선정)

  • Kim, Sungwon;Hong, Hyemin;Han, Taek Hee;Seo, Seung Nam
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.3
    • /
    • pp.111-118
    • /
    • 2017
  • In this study, pull box members were designed by finite element analysis of a steel plate covering a pull box to secure its safety on the landing pier dedicated to the large research survey ship. It was assumed that the maximum load is due to the 250 tonf class crane used for unloading work when the working environment in the upper part of the landing pier was considered. The safety of the pull box was evaluated by the comparison between the yield strength of the steel plate and the result of stress analysis on the steel plate due to the crane load. It was found that the stress at the plate from the crane load exceeded the yield strength of the steel(205MPa) when the upper part of the pull box was protected by a $1950{\times}1950mm$ steel plate cover. In order to compensate for this, a concrete filled steel tube(CFT) column with a diameter of 150 mm and a steel thickness of 10 mm was reinforced at the center of the plate, and the finite element analysis was carried out. However, the maximum stress at the steel plate was higher than the yield strength of the steel in some load cases so that it was tried to find appropriate thickness of the steel plate and diameter of the CFT columns. Finally, the analysis results showed that the safety of the pull box was secured when the thickness of the steel plate and the diameter of the CFT column were increased to 30mm and 180mm, respectively.

Treatment of Blow-out Fractures Using Both Titanium Mesh Plate and Porous Polyethylene (Medpor®) (광범위한 안와파열골절에서 Titanium Mesh Plate와 Porous Polyethylene (Medpor®) 동시 사용의 유용성)

  • Gu, Ja Hea;Won, Chang Hoon;Dhong, Eun-Sang;Yoon, Eul-Sik
    • Archives of Craniofacial Surgery
    • /
    • v.11 no.2
    • /
    • pp.85-90
    • /
    • 2010
  • Purpose: The goals of a blow-out fracture reconstruction are to restore the osseous continuity, provide support for the orbital contents and prevent functional and anatomic defects. Over the past several years, a range of autogenous and synthetic implants have been used extensively in orbital reconstructions. None of these implants have any absolute indications or contraindications in certain clinical settings. However, in extensive blow-out fractures, it is difficult to restore support of the orbital contents, which can cause more complications, such as enophthalmos. This study examined the clinical outcomes of extensive or comminuted blow-out fractures that were reconstructed by the simultaneous use of a titanium mesh plate and $Medpor^{(R)}$. Methods: Eighty six patients with extensive orbital fractures, who were admitted between March 1999 and February 2007, were reviewed retrospectively. The patients' chart and CT were inspected for review. Twenty three patients were operated on with both a titanium mesh plate (Matrix MIDFACE pre-formed orbital plate, Synthes, USA) and $Medpor^{(R)}$ (Porex, GA, USA). The patients underwent pre-operative CT scans to evaluate the fracture site and measure the area of the fracture. A transconjunctival approach was used, and titanium mesh plates were inserted subperiosteally with screw fixation. $Medpor^{(R)}$ was inserted above the titanium mesh plate. The patients were evaluated post-operatively for enophthalmos, diplopia, sensory disturbances and eyeball movement for a period of at least 6 months. Results: No implant-related complications were encountered during the follow-up period. Enophthalmos occurred in 1 patient, 1 patient had permanent sensory disturbance, and 3 patients complained of ocular pain and fatigue, which recovered without treatment. Although there were no significance differences between groups, the use of 2 implants had fewer complications. Therefore, it can be an alternative method for treating blow out fractures. Conclusion: The use of both a titanium mesh plate and $Medpor^{(R)}$ simultaneously may be a safe and acceptable technique in the reconstruction of extensive blow-out fractures.

An Experimental Study on Load Bearing Capacity of Lattice Girder as a Steel Support in Tunnelling (터널 지보재로서 격자지보의 하중지지력에 관한 실험적 연구)

  • 유충식;배규진
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.163-176
    • /
    • 1997
  • It has long been recognized that the H-beam steel rib has many shortcomings when used as a steel support in tunneling. One of the major shortcomings is the shotcrete shadow created behind H-beam flange which eventually reduces the load bearing capacity of shotcrete shell. In many European countries, plate girder as the H-beam steel rib has been replaced by lattice girder which has many advantages over the H-beam steel rib. Successful application of the lattice girder as a steel support requires a thorough investigation on the load bearing capacity of the lattice girder. Therefore, laboratory bending and compression tests were conducted on lattice girders with the aim of investigating the load bearing capacity of the lattice girders. The results of tests show that the load bearing capacity of laIn twice girders is higher than that of H-beams, which indicates that the lattice girder can be effectively used as a support in tunneling.

  • PDF

Analytical Study on Structural Performance of Wire-Integrated Steel Decks with Varied Lattice End-Support Configurations (철선일체형 데크플레이트의 래티스 단부 지지형상과 구조성능에 대한 해석적 연구)

  • Sanghee Kim;Jong-Kook Hong;Deung-Hwan Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.95-102
    • /
    • 2023
  • This study investigated the structural performance of wire-integrated steel decks with varied lattice end support conditions through finite element analysis. The results indicated that the steel decks with the lattice foots positioned above the supporting structural member have the higher system stiffness compared to the cases with the lattice foots shifted away from the support. It is also observed that the contribution of the end vertical bars on both the system stiffness and the strength is negligible when the lattice foots are located on the support. It is, especially, revealed that the end vertical bars can be eliminated when the lattice foot length is not smaller than 40mm. The ultimate load-carrying capacity of the system is not significantly affected by the lattice end support condition. The failure mode of the system is the top bar buckling at the center of the deck plate, the lattice end buckling, and the combination of both depending of design intention.

Practicability Strength Assessment of a Bone Metallic Plate at the Femur Fixation (대퇴골(Femur)고정용 골 금속판 제작 및 강도 평가)

  • Kim, Jeong-Lae;Ahn, Chang-Sik;Seo, Byoung-Do
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.83-89
    • /
    • 2008
  • Study was developed the metallic plate for fixation in the femur fracture and plates has a firm place in fracture treatment. This plates can be stabilized for fracture fixation as well as biological and dynamical device. The device's designation and sizing has a optimization with bending structural stiffness and strength, known meaning that is reliable regardless of the plate by the short type and long type. The bending strength of the curved metallic long plate has to evaluate a 11,000N and the bending strength of the curved metallic short plate has to evaluate a 6,525N. This see the X-ray image of bending angle made certain of 15$^{\circ}$ at number 2 and same 82.87$^{\circ}$ at number 2, 4, 5, 7, 8, 9, 10 by outside angle, and confirmed 25.26$^{\circ}$ at number 3, 3.68$^{\circ}$ at number 6, 15.64$^{\circ}$ at number 9 by inside angle. This study shows that keep up the metallic plate for fixation in the femur fracture through X-ray Image and the device can be used to support Revision case of Hip Implant and to use a case of Hip screw compression of Hip Neck Fracture. Short plate have a wrapping of femur and long plate have to preserve a pole of femur.

Implementation of curved type a metallic plate system at the Bone contact (골 접촉 곡선형 금속 고정 시스템 구현)

  • Kim, Jeong-Lae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.285-292
    • /
    • 2007
  • This study was developed the metallic plate for fixation in the femur fracture for the orthopedic region and rigid fixation with plates has a firm place in fracture treatment. Most plates can be used for rigid as well as biological and dynamical fracture fixation. The device's designation and sizing has a specific with bending structural stiffness and strength, known meaning that is reliable regardless of the plate by the short type and long type. Short plate have a wrapping of femur and long plate have to preserve a pole of femur. The bending strength of the curved metallic long plate has to evaluate a 11,000N and The bending strength of the curved metallic short plate has to evaluate a 6,525N. The tensile stress through to press a plate is $1573N/m^2\;and\;1539N/m^2$. The device can be used to support Revision case of Hip Implant and to use a case of Hip screw compression of Hip Neck Fracture.

  • PDF

Development of an Integrated Electrode-bipolar Plate Assembly with Reduced Contact Resistance for Vanadium Redox Flow Battery (바나듐 레독스 흐름전지용 접촉저항 감소 일체형 전극-분리판 조립체 개발)

  • Amanpreet Kaur;Jun Woo Lim
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.190-196
    • /
    • 2024
  • The bipolar plate is a crucial element of the vanadium redox flow battery (VRFB) as it serves as both the electrical conduit and the structural support for the cell within the VRFB stack. Although, the graphite material is primarily used for the bipolar plate due to its excellent electrical conductivity, a significant limitation of performance of the VRFB is present due to high interfacial contact resistance (ICR) arises between the electrode and bipolar plate in the cell stack. This study aims to develop an integrated electrode-bipolar plate assembly that will address the limitations of the ICR. The integrated assembly was constructed using a single carbon felt with thermoplastic and thermoset polymers utilizing hot press method. Experimental results verify that the bipolar plate assembly exhibits reduced area specific resistance (ASR) due to the continuous electrical path. Additionally, from the charge/discharge cell test results, the integrated assembly shows improved cell performance. Therefore, the developed integrated electrode-bipolar plate assembly can serve as a substitute for the conventional bipolar plate and electrode assembly.

Operative Treatment of Displaced Proximal Humerus Fractures with the Angular Stable Locking Compression Plate (각안정 잠김 압박 금속판을 이용한 전위된 근위 상완골 골절에 대한 수술적 치료)

  • Kim, Dong-Wook;Kim, Chong-Kwan;Jung, Sung-Won;Kim, Hyeon-Soo
    • Clinics in Shoulder and Elbow
    • /
    • v.14 no.1
    • /
    • pp.27-34
    • /
    • 2011
  • Purpose: We examined the clinical and radiological outcomes for displaced proximal humerus fractures that were treated with a PHILOS angular stable plate. Materials and Method: Forty four patients who underwent surgery between March 2007 and February 2010 were included in this study. All the cases were followed up for an average of 12 months. All the patients were examined and interviewed using the Visual Analog Scale (VAS) score, the Constant score and standardized X-rays to check the neck-shaft angle (NSA) and the presence of medial support. Results: The average Visual Analog Scale score was 2.8 points and the average Constant score was 70.5 points. The average neck shaft angle was $122.5^{\circ}$ and this was statistically significant between the good result group and the poor result group. There were 36 cases of the presence of medial support and 8 cases of the absence of medial support and the difference was statistically significant. Complications such as fixation failure happened in 12 cases. Conclusion: PHILOS angular stable plate fixation as an operative treatment for displaced proximal humerus fractures is a good and reliable treatment option.

A Study on the Structural Behavior of the Composite Slabs Using the New Shaped Deck Plate (신형상의 데크플레이트를 이용한 합성슬래브의 구조적 거동에 관한 연구)

  • Kim, Chang Woo;Choi, Sung Mo;Kang, Do An;Kim, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.589-600
    • /
    • 1997
  • Cold-formed deck sections are used in many composite floor slab applications wherein the steel deck serves not only as the form for the concrete during construction but also as the principal tensile reinforcement for the bottom fiber of the composite slab. This paper provides the results of an experimental study performed for the composite slabs with the new shaped deck plates with the locking ribs, the dove tails, and the powerful embossment, which are the mechanical means to improve positive interlocking effect between the deck and the concrete. A total of 28 specimens are tested to investigate the composite effects between the concrete and metal deck plate. Important parameters in this are the span length, the thickness of the deck plate, support condition, and whether shear studs are placed at each support or not. The test results are summarized for the maximum load and failure behavior for the specimens.

  • PDF