• Title/Summary/Keyword: Supply angle

Search Result 207, Processing Time 0.031 seconds

Surface Safety Characteristics of Polypropylene Surface Treatment by Variation of Rolling Speed and The Electric Power of Corona Discharge (코로나방전 표면 처리시 이동속도 및 공급전력 변화에 따른 폴리프로필렌 표면 안전성 특성)

  • Lee, Su Hwan;Lee, Dong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.41-46
    • /
    • 2018
  • Experiments were carried out the phenomenal observation on effect of corona treated hotmelt laminating film in process of manufacture by 2 kinds of rolling speed and electric power variatons. Surface treatment by corona which is exposure of film surface to electron of ion bombardment, rather than mere exposure to active species, like atomic oxygen or ozone, can enhance adhesion by removing contaminant, electret, roughening surface, and introducing reactive chemical group. Reactive neutrals, ions, electron and photons generated during the corona treatment interact simultaneously with polymers to alter surface chemical composition, wettability, and thus film adhesion. However, it is highly recommended that extensive chains scission is avoided because it can lead to side-effect by forming sticky matter, resulting in dropouts. This paper reviews principles of surface preparation of polypropylene substrate by corona discharging. In addition, the experimental section provides a description of parameter optimization on corona discharging treatment and its side-effect. Experimental results are discussed in terms of surface wetting as determined by contact angle and SEM measurements. When the rolling speed of the film decreased from 1.666 [m / sec] to 0.083 [m / sec], contact angle decreased from $80[^{\circ}]$ to $64[^{\circ}]$, and the wettability was greatly improved. As the supply power increased from 0.4 [kVA] to 2 [kVA] at the corona discharge surface treatment, the contact angle decreased from $77[^{\circ}]$ to $65[^{\circ}]$, and the wettability was greatly improved.

Numerical Study of DF Chemical Laser Performance with Variations of D2 Injection Angles (중수소 분사각에 따른 불화중수소 화학레이저의 성능향상에 관한 수치적 연구)

  • Park, Jun-Sung;Baek, Seung-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.78-84
    • /
    • 2005
  • In the chemical laser system with a radial expansion nozzle array, the laser beam generation is achieved by mixing F atom from supersonic nozzle and $D_{2}$ molecule from holes of round-bended supply line. Based on that the fuel injection angle with main stream has a great influence of performance on supersonic combustor, the effects of $D_{2}$ injection angles with the main F flow on mixing enhancement are numerically investigated. The results are discussed by comparison with three cases of $D_{2}$ injection angles; $10^{o}$, $20^{o}$ and $40^{o}$ with the main flow direction. Major results reveal that as the $D_{2}$ injection angle increases, the maximum small signal gains and the static pressure in the laser cavity become higher. Consequently, the $D_{2}$ injection angle between $20^{o}$ and $40^{o}$ is recommended as an optimized geometric parameter in consideration of both of high gains and low cavity pressure.

New Suction Mechanism Using Permanent Magnet (영구자석을 이용한 새로운 Suction Mechanism)

  • Seo Sungkeun;Lee Seunghee;Park Jong Hyeon;Jang Taesa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1645-1652
    • /
    • 2005
  • Pick-and-place systems using suction cups have been being widely used and continuously developed in production automation. There are, however, some drawbacks in constructing such systems. One of them is that it generates high level noise due to air compressors. And the system must have complex constitutions of mechanical component such as air compressors, air tubes, air valves, etc. Moreover, it needs continuous air supply to maintain vacuum in suction cups. If there is a failure in any suction cup, the total suction system may fail owing to air leakage. To overcome these drawbacks, we propose PMS (Permanent Magnet Suction) mechanism which has permanent magnets for vacuuming suction cups with no air compressor. The basic concept of PMS mechanism is to rotate permanent magnets with fixed angle. Simple rotation of permanent magnets changes the direction of the magnetic force applied at the suction cups. Since each suction cup has no direct connection with any of the others, the air leakage at one suction cup is not critical. The proposed suction mechanism was designed and fabricated. With some experiments, the feasibility and performance of the PMS mechanism was shown. The strong points of the PMS mechanism are in its simple structure, generating low noise, high energy efficiency, and no need of continuous energy supply.

Performance Test for a Horizontal Regenerative Evaporative Cooler (수평형 재생증발식 냉방기의 성능시험)

  • Song, Gwi-Eun;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.621-626
    • /
    • 2006
  • Regenerative evaporative cooling is known as an environment-friendly and energy efficient cooling method. A regenerative evaporative cooler (REC) consisting of dry and wet channels is able to cool down the air stream below the inlet wet-bulb temperature. In the regenerative evaporative cooler, the cooling effect is achieved by redirecting a portion of the air flown out of the dry channel into the wet channel and spraying water onto the redirected air. In this study, a horizontal regenerative cooler is considered. In the horizontal regenerative cooler, the flow direction of evaporating water has a right angle to the flow direction of supply air. This difference was investigated with visualization technique and simplified 2-module performance test was done in a thermo-environment chamber. Optimum design configuration is changed due to the wet channel which are easily fully covered with evaporating water and block the air flow inside the channel. Applying the optimized fin configuration design with the highly wetting surface treatment, a regenerative evaporative cooler was fabricated and tested to Identify the cooling performance improvement and operation characteristics. From the experimental results at the intake condition of $32^{\circ}C$ and 50% RH, the supply temperature was measured to be around $23.4^{\circ}C$. The cooling effectiveness based on the inlet dewpoint temperature was evaluated 73% which is almost close to the design expectation.

  • PDF

A study on the design of an accident prevention system using an acceleration sensor (가속도 센서를 이용한 사고방지 시스템 설계에 관한 연구)

  • Shin, Jin-Seob;Lee, Yun-Min
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.135-140
    • /
    • 2021
  • In this paper is a study on system design to prevent accidents using accelerometers. A switching power FET was configured at the power supply stage, and DC-DC converter, a regulator, and an LDO were designed for the power supply. In order to solve the power problem at once, it was divided into two parts, and a 3-axis accelerometer was designed to extract motion information to safely prevent accidents. Microprocessor enables communication through I2C and UART communication ports, and enables debugging through J-LINK. As a result of measuring the acceleration sensor data, it was confirmed that the power is normally cut off to prevent accidents when motion at an angle of 30° or more is detected.

A Study on the Structural Stability of the Swash Plate Piston Pump for Marine Hydraulic Power Supply (선박 유압공급 장치용 사판식 유압 피스톤 펌프의 구조적 안정성에 관한 연구)

  • Gwak, Beom-Seop;Lim, Jong-Hak;Lee, In-Wook;Yi, Chung-Seob;Lee, Ho Seong;Song, Chul Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.24-30
    • /
    • 2021
  • In this paper, a structural stability analysis of the swash plate hydraulic piston pump installed on hydraulic supply systems in marine vessels is presented. In order to verify the integrity of the pump design, a standard structural analysis technique based on the finite element method has been applied for various operating and boundary conditions. For the maximum operational torque (223 N·m) at 5°, 10°, and 15° of the swash plate angle, the maximum deformation, equivalent stress and safety factor are evaluated. The analytical results show that under current operating conditions, the structural reliability of the design has been confirmed.

A Study on Vehicle Crash Characteristics with RCAR Crash Test in Compliance with the New Test Condition (동일 승용차량에 대한 RCAR 신.구 충돌시험을 통한 차체 충돌특성에 관한 연구)

  • Lim, Jong-Hun;Park, In-Song;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.190-194
    • /
    • 2006
  • This research investigates vehicle structure acceleration and vehicle deformation with RCAR crash test. To investigate vehicle damage characteristics in an individual case, it is possible to RCAR low speed crash test. In this study, two tests were conducted to evaluate difference between RCAR new condition and RCAR old condition. A two large vehicles were subjected to a frontal crash test at a speed of 15km/h with an offset of 40% $10^{\circ}$ angle barrier and flat barrier. The results of the 15km/h with an offset of 40% $10^{\circ}$ angle barrier revealed high acceleration value on the vehicle structure and high repair cost compared to the RCAR 15km/h with an offset of 40% flat barrier. So in order to improve damage characteristics in low speed crash of vehicle structure and body component of the monocoque type passenger vehicles, the end of front side member and front back beam should be designed with optimum level and to supply the end of front side member as a partial condition approx 300mm.

Syngas-Oxygen Combustion Characteristics of a Swirl-Stabilized Premixed Flame (합성가스-순산소 예혼합 화염의 연소특성)

  • Cho, Ju-Hyeong;Park, Jun-Hong;Jeon, Choong-Hwan;Ahn, Koo-Kyoung;Kim, Han-Seok
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.6
    • /
    • pp.561-569
    • /
    • 2010
  • The present study deals with experimental investigations on the syngas-oxygen combustion characteristics of a swirl-stabilized premixed flame in a 10 kW combustor. The effect of hydrogen in syngas has been investigated with different swirl angles to identify the role of hydrogen and swirl strength on the flame stability and CO emissions. The results show that hydrogen addition extended the blowout limit while narrowing the flashback limit. The dependence of blowout on the swirl angle is negligible while the dependence of flashback on the swirl angle is evidenced by two regimes depending on the amount of hydrogen. CO emission is decreased with increasing excess $O_2$ supply or increasing hydrogen content. Chemiluminescence diagnostics is utilized to provide information on the structure of a swirl-stabilized premixed flame. The OH chemiluminescence intensity is more concentrated near the burner exit with an increase in the hydrogen content, which results from high reactivity of hydrogen.

Design Example of Gravel Mat for Horizontal Drains (쇄석Mat를 이용한 수평배수공법 설계사례)

  • Jeong, Kyeong-Han;Lee, Young-Keun;Lee, See-Woo;Kim, Jae-Sung;Kim, Byung-Tak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.174-187
    • /
    • 2005
  • Recently, because of environment, cost, supply and demand factors, though applying sea-sand as horizontal drains is getting difficult that usage of Gravel has been growing in large size of construction sites, Study on engineering properties and behavior characteristics of Gravel stratum is not thoroughgoing enough. We have applied Gravel Mat as the horizontal drains in O O construction site. We also conducted several field tests such as Material property test, Geosynthetics damage test with Repeated load, Discharge capacity test performed by inflow of upper soil and In-situ PBD Penetration test to review the application of Gravel Mat. Test results show that Gravel Mat is not only advantageous in Trafficability and Water drainage by Consolidation due to its great Internal friction angle and Permeability, but also easy to penetrate with Mandrel and has great discharge capacity and guarantee of the stability against geosynthetics damage at the same time. With these benefits Gravel Mat shows great application in fields.

  • PDF

Design of Controller for Reducing In-Rush Current of Single-Phase Induction Motor (단상유도전동기의 돌입전류저감을 위한 제어기 설계)

  • Park, Su-Kang;Baek, Hyung-Lae;Lee, Sang-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.5
    • /
    • pp.238-245
    • /
    • 2001
  • During an AC motor's start-up accelerating period, a large amount of current is required to reach to the rating speed. This is called in-rush current. This peak in-rush current can be more than about several times the operating or steady-state current in the full load rating of the motor. In-rush current is present in both and electronic ballasts. The main area of concern is the tripping of circuit breaker and fuses which can affect electrical system components From this, we can see that the electrical power controllers will be rather concerned, since they have to supply the actual current necessary to start the motor. This paper presents a new method to reducing in-rush current and energy saving of the single-phase induction motor used in air-conditioner. It can be obtained that proposed system is low cost and small size as compared with other controller. Experiments are focused on a capacitor starting single-phase induction motor. The optimal power saving and in-rush current limiting by phase angle control are verified by experimental results. Also, auxiliary winding was controlled by electronic starting switch.

  • PDF