Abstract
The present study deals with experimental investigations on the syngas-oxygen combustion characteristics of a swirl-stabilized premixed flame in a 10 kW combustor. The effect of hydrogen in syngas has been investigated with different swirl angles to identify the role of hydrogen and swirl strength on the flame stability and CO emissions. The results show that hydrogen addition extended the blowout limit while narrowing the flashback limit. The dependence of blowout on the swirl angle is negligible while the dependence of flashback on the swirl angle is evidenced by two regimes depending on the amount of hydrogen. CO emission is decreased with increasing excess $O_2$ supply or increasing hydrogen content. Chemiluminescence diagnostics is utilized to provide information on the structure of a swirl-stabilized premixed flame. The OH chemiluminescence intensity is more concentrated near the burner exit with an increase in the hydrogen content, which results from high reactivity of hydrogen.