• Title/Summary/Keyword: Superoxide dismutase 3

Search Result 1,259, Processing Time 0.022 seconds

Purification and Characterization of Manganese Superoxide Dismutase from Staphylococcus sciuri

  • Song, Chi-Hyun;Park, Eun-Kyung;Suh, Hyung-Joo;Lee, Yong-Se;Choi, Jang-Won;Ra, Kyung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.271-275
    • /
    • 1999
  • The intracellular superoxide dismutase (SOD) from Staphylococcus sciuri was isolated to homogeneity by continuous steps, including ammonium sulfate fractionation, DEAE-ion-exchange chromatography, gel filtration, and phenyl hydrophobic gel chromatography. Pure SOD had a specific activity of 4,625 U/mg and was purified 158-fold with a yield of 31 % from a cell free extract. The molecular weight of the purified SOD was determined to be approximately 35.5 kDa by gel filtration and the enzyme was also shown to be composed of dimeric subunits on denaturing SDS-PAGE. The enzyme activity remained stable at pH 5 to 11 and also to heat treatment of up to $50^{\circ}C$ at pH 7.8, with 80% relative activity. The enzyme was insensitive to cyanide, hydrogen peroxide, and azide, indicating that it is a manganese-containing SOD. The EPR spectrum showed the enzyme containing manganese as a cofactor.

  • PDF

Nucleus-DNA Damage and Different Response of Plant Cells to Paraquat in Relation to Enzyme Activity of Superoxide Dismutase. (Superoxide dismutase의 활성차이에 따른 식물세포의 paraquat에 대한 반응과 핵 DNA 손상 검정)

  • 권순태;이명현;오세명;정도철;김길웅
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.614-619
    • /
    • 2004
  • This study was undertaken to investigate the different responses of cultured plant cells to paraquat treatment and nucleus-DNA damage in relation to enzyme activity of superoxide dismutase (SOD). Furthermore, this study was also carried out to understand the antioxidative mechanism of plant cells to environmental stress. We selected two different species of plant cultured cells, Ipomoea batatas as high-SOD species and Lonicera japonica as low-SOD species. The total activity and specific activity of SOD in a chlorophyllous cell of I. batatas were 3,736 unit/gㆍfresh weight and 547 unit/mgㆍprotein, respectively, and those in L. japonica were 23 unit/gㆍfresh weight and 13 unit/mgㆍprotein, respectively SOD activity in chlorophyllous I. batatas cells reached its maximum level at 10 to 15 days after subculture, whereas that in L. japonica remained at a very low SOD level during the whole period of subculture. In comparison to L. japonica, I. batatas, a high-SOD species, showed high tolerance to paraquat 10 and 50 mg/l treatment in terms of cell viability and electrolyte leakage. Based on the result of comet assay, the nucleus-DNA damage of two species by paraquat 50 mg/l treatment was not significantly different. However, I. batatas cells repaired their damaged DNA more effectively than the cells of the low-SOD species, L. japonica.

Isolation and Transcriptional Expression of CuZn Superoxide Dismutase from Codonopsis lanceolata

  • Lee, Kang;In, Jun-Gyo;Yu, Chang-Yeon;Yun, Song-Joong;Min, Byung-Hoon;Rho, Yeong-Deok;Kim, Moo-Sung;Yang, Deok-Chun
    • Plant Resources
    • /
    • v.7 no.3
    • /
    • pp.163-169
    • /
    • 2004
  • To investigate the defense mechanism against the abiotic stress, a cDNA clone encoding a CuZn superoxide dismutase (CuZnSOD) protein was isolated from a cDNA library prepared from tabroot mRNAs of Codonopsis lanceolata. The eDNA, designated ClSODCc, is 799 nucleotides long and has an open reading frame of 459 bp with a deduced amino acid sequence of 152 residues. The deduced amino acid sequence of ClSODCc matched to the previously reported CuZnSODs. Consensus amino acid residues (His-45, -47, -62, -70, -79, -119 and Asp-82) were involved in Cu-, Cu/Zn-, and Zn- binding ligands. The deduced amino acid sequence of ClSODCc showed high homologies (82%-86%) regardless of species. Expression of ClSODCc by oxidative stress was increased up to 1 h after treatment and declined gradually. Much earlier and stronger expression of ClSODCc was observed in the cold stress treatment.

  • PDF

Comparison of Superoxide Dismutase and Peroxidase Activities in Rice Varieties

  • Chung, Ill-Min;Kim, Kwang-Ho;Ahn, Joung-Kuk;Lee, Jin-Ohk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.5
    • /
    • pp.277-281
    • /
    • 2000
  • Fifty-four Korean native and 28 foreign varieties harvested in 1998 and 1999 were examined for superoxide dismutase (SOD) and peroxidase (POD) activities. The SOD and POD activities of leaves extracts in Korean native and foreign rice varieties showed variation at the heading stage. The activities of SOD and POD changed with growth stage. In comparison of storage duration, the SOD and POD activities of the extract from three months stored seeds in Korean native (CV=53.3%) and foreign rice (CV=57.9%) varieties were higher than that of stored rices for a year in seed extracts although the activities among varieties did not show significant variation. Also, the averaged activity of foreign rice varieties (SOD=12.9%) was relatively higher than that of korean native rice varieties (SOD=10.7%). The test of activity at the enzymatic level related to antioxidative activity suggests that the rice varieties with higher antioxidative potentials can be developed and also may provide information with rice breeder to breed rice variety with a high antioxidative activity.

  • PDF

Isolation of Superoxide Dismutase cDNAS from an Weedy Rice Variety and Transformation of a Cultivated Rice Variety (잡초성벼의 superoxide dismutase cDNA cloning과 재배벼로의 형질전환)

  • Park, Sang-Gyu;Park, Jong-Suk;Lee, Seung-In;Suh, Suk-Chul;Kim, Byung-Keuk;Jo, Youl-Lae;Suh, Hak-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.2
    • /
    • pp.156-161
    • /
    • 2002
  • Two different cDNA clones for superoxide dismutase (SOD) were isolated from an weedy rice variety (Oryza sativa, cv. Bhutan14Ad) and were introduced into a cultivated rice variety (Oryza sativa, cv. Nakdong) in order to develop the environmental stress-resistant rice plants. Sequence analysis of the cloned cDNAS indicated that the deduced amino acid sequence of SOD-A is 88.4% identical to that of SOD-B. Furthermore, the nucleotide sequence of SOD-A is 99.3% identical to that of a Cu/Zn SOD gene of Oryza sativa (GenBank accession No. L36320). The nueleotide sequence of SOD-B was identical to that of the previously published SOD gene (Accession No. D01000). A cultivated rice variety, Nakdong-byeo, was transformed with chimeric SOD genes containing a actin promoter of rice and pin2 terminator using a particle bombardment technique. Transformed calli were selected on an selection medium containing phosphinothricin (PPT). Transgenic rice plants were regenerated from the PPT-resistant calli. PCR analysis with genomic DNAs from transgenic plants revealed that transgenes are introduced into rice genome.

Changes of antioxidant enzyme activities subjected to water stress in soybean leaves (대두(大豆)에서 분석(水分)스트레스에 의(依)한 항산화효소(抗酸化酵素)의 활성도(活性度) 변화(變化))

  • Kim, Tae-Sung;Kang, Sang-Jae;Park, Woo-Churl
    • Current Research on Agriculture and Life Sciences
    • /
    • v.16
    • /
    • pp.24-30
    • /
    • 1998
  • This experiment was carried out to elucidate and study about plant defense mechanism subjected to water stress(drought, flooding). We measured water content, total soluble protein content as stress marker and superoxide dismutase(SOD), catalase (CAT) as antioxidant enzymes subjected to water stress(drought, flooding) and recovery in soybean leaves. The results obtained were as follows; Two soybean lines(keonolkong, euhakong)leaves exposed to water stress (drought, flooding) showed premature senescence as evidence by the decrease in water content, and total soluble protein content, but those of soybean leaves subject to water stress recovery for 3 days were recovered. Visual damage was much worse at drought stress than flooding stress and was worse keunolkong than enhakong. The activity of superoxide dismutase, catalase subjected to water stress(drought, flooding)was on the decrease, but degree of decrease was different from a sort of soybean lines, drought and flooding stress.

  • PDF

Cloning, Purification, and Characterization of Recombinant Human Extracellular Superoxide Dismutase in SF9 Insect Cells

  • Shrestha, Pravesh;Yun, Ji-Hye;Kim, Woo Taek;Kim, Tae-Yoon;Lee, Weontae
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.242-249
    • /
    • 2016
  • A balance between production and degradation of reactive oxygen species (ROS) is critical for maintaining cellular homeostasis. Increased levels of ROS during oxidative stress are associated with disease conditions. Antioxidant enzymes, such as extracellular superoxide dismutase (EC-SOD), in the extracellular matrix (ECM) neutralize the toxicity of superoxide. Recent studies have emphasized the importance of EC-SOD in protecting the brain, lungs, and other tissues from oxidative stress. Therefore, EC-SOD would be an excellent therapeutic drug for treatment of diseases caused by oxidative stress. We cloned both the full length (residues 1-240) and truncated (residues 19-240) forms of human EC-SOD (hEC-SOD) into the donor plasmid pFastBacHTb. After transposition, the bacmid was transfected into the Sf9-baculovirus expression system and the expressed hEC-SOD purified using FLAG-tag. Western blot analysis revealed that hEC-SOD is present both as a monomer (33 kDa) and a dimer (66 kDa), as detected by the FLAG antibody. A water-soluble tetrazolium (WST-1) assay showed that both full length and truncated hEC-SOD proteins were enzymatically active. We showed that a potent superoxide dismutase inhibitor, diethyldithiocarbamate (DDC), inhibits hEC-SOD activity.

Superoxide dismutase 3 protects mesenchymal stem cells through enhanced autophagy and regulation of FoxO3a trafficking

  • Agrahari, Gaurav;Sah, Shyam Kishor;Kim, Tae-Yoon
    • BMB Reports
    • /
    • v.51 no.7
    • /
    • pp.344-349
    • /
    • 2018
  • Therapeutic applications of mesenchymal stem cells (MSCs) are limited due to their early death within the first few days of transplantation. Therefore, to improve the efficacy of cell-based therapies, it is necessary to manipulate MSCs so that they can resist various stresses imposed by the microenvironment. Moreover, the role of superoxide dismutase 3 (SOD3) in regulating such survival under different stress conditions remain elusive. In this study, we overexpressed SOD3 in MSCs (SOD3-MSCs) and evaluated its effect under serum starvation conditions. Nutritional limitation can decrease the survival rate of transplanted MSCs and thus can reduce their efficacy during therapy. Interestingly, we found that SOD3-MSCs exhibited reduced reactive oxygen species levels and greater survival rates than normal MSCs under serum-deprived conditions. In addition, overexpression of SOD3 attenuated starvation-induced apoptosis with increased autophagy in MSCs. Moreover, we have demonstrated that SOD3 protects MSCs against the negative effects of serum deprivation via modulation of AMP-activated protein kinase/sirtulin 1, extracellular signal-regulated kinase activation, and promoted Forkhead box O3a trafficking to the nucleus. Taken together, these results demonstrate that SOD3 promotes MSCs survival and add further evidence to the concept that SOD3-MSCs may be a potential therapeutic agent with better outcomes than normal MSCs for various diseases involving oxidative stress and compromised MSCs survival during therapy.

RIP3-Dependent Accumulation of Mitochondrial Superoxide Anions in TNF-α-Induced Necroptosis

  • Lee, Jiyoung;Lee, Sunmi;Min, Seongchun;Kang, Sang Won
    • Molecules and Cells
    • /
    • v.45 no.4
    • /
    • pp.193-201
    • /
    • 2022
  • Excessive production of reactive oxygen species (ROS) is a key phenomenon in tumor necrosis factor (TNF)-α-induced cell death. However, the role of ROS in necroptosis remains mostly elusive. In this study, we show that TNF-α induces the mitochondrial accumulation of superoxide anions, not H2O2, in cancer cells undergoing necroptosis. TNF-α-induced mitochondrial superoxide anions production is strictly RIP3 expression-dependent. Unexpectedly, TNF-α stimulates NADPH oxidase (NOX), not mitochondrial energy metabolism, to activate superoxide production in the RIP3-positive cancer cells. In parallel, mitochondrial superoxide-metabolizing enzymes, such as manganese-superoxide dismutase (SOD2) and peroxiredoxin III, are not involved in the superoxide accumulation. Mitochondrial-targeted superoxide scavengers and a NOX inhibitor eliminate the accumulated superoxide without affecting TNF-α-induced necroptosis. Therefore, our study provides the first evidence that mitochondrial superoxide accumulation is a consequence of necroptosis.

Effects of Dykellic Acid Derived from Microorganism on the Cell Growth and Superoxide Dismutase Activity in Tobacco Photomixotrophic Cultured Cells (미생물 유래 Dykellic Acid가 담배 녹색배양세포의 생장 및 Superoxide Dismutase 활성에 미치는 영향)

  • 곽상수;권혜경;권석윤;이행순;이호재;고영희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.2
    • /
    • pp.133-136
    • /
    • 2000
  • To evaluate the biological effects of dykellic acid, a novel apoptosis inhibitor, isolated from microorganism on the plant cells, the cell growth, protein contents, and superoxide dismutase (SOD) activity were investigated in suspension cultures of tobacco photomixotrophic cultured (PM) cells on 12 days after different concentration of chemical treatment. The cells were cultured in MS medium containing 0.7 mg/L 2,4-D, 0.3 mg/L kinetin, 30 g/L sucrose and 200 mM NaCl at $25^{\circ}C$ in the light (100 rpm). Dykellic acid strongly inhibited the cell growth by evaluating the cell fresh wt and the ion conductivity in the medium ($IC_{50}$/, about 20 $\mu$M). The results as inhibition of cell growth and cell wall damage were same. The compound significantly increased the protein contents and the SOD specific activity in proportion with the dosage. The results suggested that dykellic acid may have biological activity in plant cells and tobacco PM cells may be suitable biomaterials for in vitro evaluation of the biological activity of natural products.

  • PDF