• 제목/요약/키워드: Superconducting transition temperature

검색결과 176건 처리시간 0.021초

대면적 단결정 Gd1.5Ba2Cu3O7-y 벌크 초전도체의 초전도 특성 (Superconducting Properties of Large Single Grain Gd1.5Ba2Cu3O7-y Bulk Superconductors)

  • 김찬중;박승연;김광모;박순동;전병혁
    • 한국재료학회지
    • /
    • 제22권11호
    • /
    • pp.569-574
    • /
    • 2012
  • Large single grain $Gd_{1.5}Ba_2Cu_3O_{7-y}$ (Gd1.5) bulk superconductors were fabricated by a top-seeded melt growth (TSMG) process using an $NdBa_2Cu_3O_{7-y}$ seed. The seeded Gd1.5 powder compacts with a diameter of 50 mm were subjected to the heating cycles of a TSMG process. After the TSMG process, the diameter of the single grain Gd1.5 compact was reduced to 43 mm owing to the volume contraction during the heat treatment. The superconducting transition temperature ($T_c$) of the top surface of the single grain Gd1.5 sample was as high as 93.5 K. The critical current densities ($J_cs$) at 77 K and 1T and 1.5 T were in ranges of 25,200-43,900 $A/cm^2$ and 10,000-23,000 $A/cm^2$, respectively. The maximum attractive force at 77 K of the sample field-cooled using an Nd-B-Fe permanent magnet (surface magnetic field of 0. 527 T) was 108.3 N; the maximum repulsive force of the zero field-cooled sample was 262 N. The magnetic flux density of the sample field-cooled at 77 K was 0.311T, which is approximately 85% of the applied magnetic field of 0.375 T. Microstructure investigation showed that many $Gd_2BaCuO_5$ (Gd211) particles of a few ${\mu}m$ in size, which are flux pinning sites of Gd123, were trapped within the $GdBa_2Cu_3O_{7-y}$ (Gd123) grain; unreacted $Ba_3Cu_5O_8$ liquid and Gd211 particles were present near the edge regions of the single grain Gd1.5 bulk compact.

Effect of boron milling on phase formation and critical current density of MgB2 bulk superconductors

  • Kang, M.O.;Joo, J.;Jun, B.H.;Park, S.D.;Kim, C.S.;Kim, C.J.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권1호
    • /
    • pp.18-24
    • /
    • 2019
  • This study was carried out to investigate the effect of milling of boron (B), which is one of raw materials of $MgB_2$, on the critical current density ($J_c$) of $MgB_2$. B powder used in this study is semi-amorphous B (Pavezyum, Turkey, 97% purity, 1 micron). The size of B powder was reduced by planetary milling using $ZrO_2$ balls (a diameter of 2 mm). The B powder and balls with a ratio of 1:20 were charged in a ceramic jar and then the jar was filled with toluene. The milling time was varied from 0 to 8 h. The milled B powders were mixed with Mg powder in the composition of (Mg+2B), and the powder mixtures were uniaxially pressed at 3 tons. The powder compacts were heat-treated at $700^{\circ}C$ for 1 h in flowing argon gas. Powder X-ray diffraction and FWHM (Full width at half maximum) were used to analyze the phase formation and crystallinity of $MgB_2$. The superconducting transition temperature ($T_c$) and $J_c$ of $MgB_2$ were measured using a magnetic property measurement system (MPMS). It was found that $B_2O_3$ was formed by B milling and the subsequent drying process, and the volume fraction of $B_2O_3$ increased as milling time increased. The $T_c$ of $MgB_2$ decreased with increasing milling time, which was explained in terms of the decreased volume fraction of $MgB_2$, the line broadening of $MgB_2$ peaks and the formation of $B_2O_3$. The $J_c$ at 5 K increased with increasing milling time. The $J_c$ increase is more remarkable at the magnetic field higher than 3 T. The $J_c$ at 5 K and 4 T was the highest as $4.37{\times}10^4A/cm^2$ when milling time was 2 h. The $J_c$ at 20 K also increased with increasing milling time. However, The $J_c$ of the samples with the prolonged milling for 6 and 8 h were lower than that of the non-milled sample.

볼 밀링 후 방전플라즈마 소결법에 의해 제조된 MgB2의 상 분석 (The Phase Analysis of MgB2 Fabricated by Spark Plasma Sintering after Ball Milling)

  • 강득균;최성현;안인섭
    • 한국분말재료학회지
    • /
    • 제15권5호
    • /
    • pp.371-377
    • /
    • 2008
  • This paper deals with the phase analysis of $MgB_2$ bulk using spark plasma sintering process after ball milling. Mg and amorphous B powders were used as raw materials, and milled by planetary-mill for 9 hours at argon atmosphere. In order to confirm formation of $MgB_2$ phase, DTA and XRD were used. The milled powders were fabricated to $MgB_2$ bulk at the various temperatures by Spark Plasma Sintering. The fabricated $MgB_2$ bulk was evaluated with XRD, EDS, FE-SEM and PPMS. In the DTA result, reaction on formation of $MgB_2$ phase started at $340^{\circ}C$. This means that ball milling process improves reactivity on formation of $MgB_2$ phase. The $MgB_2$ MgO and FeB phases were characterized from XRD result. MgO and FeB were undesirable phases which affect formation of $MgB_2$ phase, and it's distribution could be confirmed from EDS mapping result. Spark Plasma Sintered sample for 5 min at $700^{\circ}C$ was relatively densified and it's density and transition temperature showing super conducting property were $1.87\;g/cm^3$ and 21K.

Mg가 혼합된 Bi(Pb)SrCaCuO(110 K 상) 고온초전도체의 미세구조에 따른 초전도 특성 변화에 대한 연구 (Superconducting Properties of the Mg-Bi(Pb)SrCaCuO (110 K Phase) Composite System focusing on the Microstructure)

  • 이정화;최봉수;이민수
    • 한국세라믹학회지
    • /
    • 제40권6호
    • /
    • pp.530-538
    • /
    • 2003
  • 110 K 상의 산화물 고온초전도체를 B $i_{1.84}$P $b_{0.34}$S $r_{1.91}$C $a_{2.03}$C $u_{3.06}$ $O_{10+}$$\delta$의 출발조성비로 고상반응법에 의해 합성하였다. 합성된 Bi계 110 K 상의 산화물 고온초전도 물질을 다시 분말 상태로 만든 후, MgO 금속산화물 분말을 5~50 wt%의 각 비율로 혼합하였다. MgO 금속산화물 분말이 혼합된 시편들을 820~86$0^{\circ}C$로 24시간동안 최종 소결시켰다. 그 후, 각 시편들에 대하여 x-선, $T_{c}$, SEM 등을 측정하여 MgO 금속산화물 혼합량에 대한 초전도특성 및 표면의 입자 크기 변화 등에 대한 조사를 진행하였다. MgO 금속산화물의 혼합량이 증가됨에 따라 MgO 관련 피크들의 강도 및 2212 상들의 피크들의 비율은 증가되었고, 시편 내 2223 상의 비율은 감소하고 2212상의 비율은 증가되었다.다.은 증가되었다.다.

Refinement of Gd2O3 inclusions in the GdBa2Cu3O7-δ films fabricated by the RCE-DR process

  • Park, I.;Oh, W.J.;Lee, J.H.;Moon, S.H.;Yoo, S.I.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권4호
    • /
    • pp.46-49
    • /
    • 2018
  • To improve in-field critical current densities ($J_c$) of $GdBa_2Cu_3O_{7-{\delta}}$ (GdBCO) coated conductors(CCs) fabricated by the reactive co-evaporation by deposition and reaction (RCE-DR) process, employing the nominal composition of Gd:Ba:Cu=1:1:2.5, we tried to refine the $Gd_2O_3$ particles trapped in the GdBCO superconducting matrix. For this purpose, we carefully selected the processing conditions on the stability phase diagram of GdBCO for this composition. By lowering the growth temperature of $Gd_2O_3$ in the liquid, we could refine the average particle size of $Gd_2O_3$ particles trapped in the GdBCO matrix and also achieve the zero-resistive transition temperatures ($T_{c,zero}$) of 92.3~94.2 K. Unfortunately, however, it was unsuccessful to achieve enhanced in-field $J_c$ values from these samples because of an air-contamination of the amorphous precursor film before its conversion into crystalline GdBCO film, suggesting that any exposure of the amorphous precursor film to air is fatal in obtaining high performance GdBCO CCs via the RCE-DR process.

Chromite 물질의 자기상호작용에 관한 뫼스바우어 분광연구 (Mössbauer Studies of Changed Interaction on Cr Ions in Chromite)

  • 최강룡;김철성
    • 한국자기학회지
    • /
    • 제17권1호
    • /
    • pp.47-50
    • /
    • 2007
  • 최근 geometrical frustration 현상 및 멀티페로익 효과가 Cr 이온의 나선 스핀 구조에 기인하는 것으로 해석되고 있다. 이에 본 연구에서는 Cr 이온 자리에 Fe을 치환하여 $CoCrFeO_4$를 제조하였고, $M\"{o}ssbauer$ 분광법에 의해 자기적 미세 구조의 상관관계를 연구하였다. 졸겔법을 이용하여 Fd3m의 cubic 스피넬 구조를 갖는 $CoCr_2O_4,\;CoCrFeO_4$ 단일상을 합성하였고, Rietveld 법에 의한 분석결과 격자상수는 $a_0=8.340$에서 $8.377{\AA}$로 증가 하였으며, Cr, Fe 이온은 모두 팔면체 구조에 위치하는 것으로 분석되었다. 자기 상전이 온도는 $T_N=97K$에서 320 K로 증가하였으며, 상호작용의 변화에 따라서 field cooled 온도에 따른 자화 곡선의 변화를 관측하였다. $M\"{o}ssbauer$ 스펙트럼 분석결과 4.2 K에서 공명흡수선에 대한 초미세자기장($H_{hf}$) 값은 각각 507, 492 kOe 정도로 나타났으며, 이성질체 이동치($\delta$)는 0.33, 0.34 mm/s 정도로 Fe 이온상태가 둘 다 +3 가의 이온상태임을 알 수 있었다.