DOI QR코드

DOI QR Code

Effect of boron milling on phase formation and critical current density of MgB2 bulk superconductors

  • Kang, M.O. (Korea Atomic Energy Research Institute) ;
  • Joo, J. (Sungkyunkwan University) ;
  • Jun, B.H. (Korea Atomic Energy Research Institute) ;
  • Park, S.D. (Korea Atomic Energy Research Institute) ;
  • Kim, C.S. (Korea Research Institute of Standards and Science) ;
  • Kim, C.J. (Korea Atomic Energy Research Institute)
  • Received : 2019.03.14
  • Accepted : 2019.03.28
  • Published : 2019.03.31

Abstract

This study was carried out to investigate the effect of milling of boron (B), which is one of raw materials of $MgB_2$, on the critical current density ($J_c$) of $MgB_2$. B powder used in this study is semi-amorphous B (Pavezyum, Turkey, 97% purity, 1 micron). The size of B powder was reduced by planetary milling using $ZrO_2$ balls (a diameter of 2 mm). The B powder and balls with a ratio of 1:20 were charged in a ceramic jar and then the jar was filled with toluene. The milling time was varied from 0 to 8 h. The milled B powders were mixed with Mg powder in the composition of (Mg+2B), and the powder mixtures were uniaxially pressed at 3 tons. The powder compacts were heat-treated at $700^{\circ}C$ for 1 h in flowing argon gas. Powder X-ray diffraction and FWHM (Full width at half maximum) were used to analyze the phase formation and crystallinity of $MgB_2$. The superconducting transition temperature ($T_c$) and $J_c$ of $MgB_2$ were measured using a magnetic property measurement system (MPMS). It was found that $B_2O_3$ was formed by B milling and the subsequent drying process, and the volume fraction of $B_2O_3$ increased as milling time increased. The $T_c$ of $MgB_2$ decreased with increasing milling time, which was explained in terms of the decreased volume fraction of $MgB_2$, the line broadening of $MgB_2$ peaks and the formation of $B_2O_3$. The $J_c$ at 5 K increased with increasing milling time. The $J_c$ increase is more remarkable at the magnetic field higher than 3 T. The $J_c$ at 5 K and 4 T was the highest as $4.37{\times}10^4A/cm^2$ when milling time was 2 h. The $J_c$ at 20 K also increased with increasing milling time. However, The $J_c$ of the samples with the prolonged milling for 6 and 8 h were lower than that of the non-milled sample.

Keywords

CJJOCB_2019_v21n1_18_f0001.png 이미지

Fig. 1. FE-SEM image of (a) B and (b) Mg powders used as raw materials.

CJJOCB_2019_v21n1_18_f0002.png 이미지

Fig. 2. FE-SEM images of the B powders milled for (a) 2 h, (b) 4 h, (c) 6 h, and (d) 8 h.

CJJOCB_2019_v21n1_18_f0003.png 이미지

Fig. 3. Variation of X-ray diffraction patterns of the B powders as a function of milling time.

CJJOCB_2019_v21n1_18_f0004.png 이미지

Fig. 4. Histogram of an apparent density before/after the heat treatment as a function of milling time.

CJJOCB_2019_v21n1_18_f0005.png 이미지

Fig. 5. Variation of an apparent density of the heat-treated sample as a function of milling time.

CJJOCB_2019_v21n1_18_f0006.png 이미지

Fig. 6. SEM micrograph of the MgB2 sample after heat treatment.

CJJOCB_2019_v21n1_18_f0007.png 이미지

Fig. 7. Powder X-ray diffraction patterns of the samples heat-treated using the non-milled and milled B powders.

CJJOCB_2019_v21n1_18_f0008.png 이미지

Fig. 8. Volume fraction of MgB2, Mg and MgO as a function of milling time.

CJJOCB_2019_v21n1_18_f0009.png 이미지

Fig. 9. M-T curves of MgB2 prepared using non-milled and milled B powders.

CJJOCB_2019_v21n1_18_f0010.png 이미지

Fig. 10. Jc-B curves at 5 K and 20 K of MgB2 prepared using non-milled and milled B powders.

TABLE I FWHM OF (002) AND (110) PEAK AND CALCULATED GRAIN SIZE AND MICROSTRAIN AS A FUNCTION OF MILLING TIME.

CJJOCB_2019_v21n1_18_t0001.png 이미지

TABLE II SUPERCONDUCTING TRANSITION TEMPERATURES AND TRANSITION WIDTH OF THE SAMPLES PREPARED USING THE NON-MILLED AND MILLED POWDER.

CJJOCB_2019_v21n1_18_t0002.png 이미지

References

  1. W. V. Hassenzahl, D. W. Hazelton, B. K. Johnson, P. Komarek, M. Noe and C. T. Reis, "Electric power applications of superconductivity," Proceedings of The IEEE, vol. 92, no. 10, pp. 1655-1674, 2004. https://doi.org/10.1109/JPROC.2004.833674
  2. D. Larbalestier, A. Gurevich, D. M. Feldmann and A. Polyanskii, "High-$T_c$ superconducting materials for electric power applications," Nature, vol. 414, pp. 368-377, 2001. https://doi.org/10.1038/35104654
  3. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu, "Superconductivity at 39 K in magnesium diboride," Nature, vol. 410, pp. 63-64, 2001. https://doi.org/10.1038/35065039
  4. D. K. Finnemore, J. E. Ostenson, S. L. Bud'ko, G. Lapertot and P. C. Canfield, "Thermodynamic and transport properties of superconducting $Mg^{10}B_2$," Phys. Rev. Lett., vol. 86, pp. 2420-2422, 2001. https://doi.org/10.1103/PhysRevLett.86.2420
  5. Y. Eltsev, S. Lee, K. Nakao, N. Chikumoto, S. Tajima, N. Koshizuka and M. Murakami, "Anisotropic superconducting properties of $MgB_2$ single crystals probed by in-plane electrical transport measurements," Phys. Rev. B., vol. 65, pp. 140501, 2002. https://doi.org/10.1103/PhysRevB.65.140501
  6. W. Goldacker, S. I. Schlachter, B. Obst and M. Eisterer, "In situ $MgB_2$ round wires with improved properties," Supercond. Sci. Technol., vol. 17, pp. S490-S495, 2004. https://doi.org/10.1088/0953-2048/17/9/006
  7. C. -J. Kim, J. H. Yi, B. -H. Jun, B. Y. You, S. -D. Park and K. -N. Choo, "Reaction-induced pore formation and superconductivity in in situ processed $MgB_2$ superconductors," Physica C, vol. 502, pp. 4-9, 2014. https://doi.org/10.1016/j.physc.2014.04.006
  8. D. Wang, Y. Ma, Z. Yu, Z. Gao, X. Zhang, K. Watanabe and E. Mossang, "Strong influence of precursor powder on the critical current density of Fe-sheathed $MgB_2$ tapes," Supercond. Sci. Technol., vol. 20, pp. 574-578, 2007. https://doi.org/10.1088/0953-2048/20/6/015
  9. A. Serquis, X. Z. Liao, Y. T. Zhu, J. Y. Coulter, J. Y. Huang, J. O. Willis, D. E. Peterson and F. M. Mueller, "Influence of microstructures and crystalline defects on the superconductivity of $MgB_2$," J. Appl. Phys., vol. 92, pp. 351-356, 2002. https://doi.org/10.1063/1.1479470
  10. P. Kovac, B. Birajdar, I. Husek, T. Holubek and O. Eibl, "Stabilized in situ rectangular $MgB_2$ wires: the effect of B purity and sheath materials," Supercond. Sci. Technol., vol. 21, pp. 045011, 2008. https://doi.org/10.1088/0953-2048/21/4/045011
  11. Q. Z. Shi, Y. C. Liu, Q. Zhao and Z. Q. Ma, "Phase formation process of bulk $MgB_2$ analyzed by differential thermal analysis during sintering," J. Alloys compd., vol. 458, pp. 553-557, 2008. https://doi.org/10.1016/j.jallcom.2007.04.045
  12. M. Muralidhar, A. Ishihara, K. Suzuki, Y. Fukumoto, Y. Yamamoto and M. Tomita, "Optimization of the fabrication process for high trapped field $MgB_2$ bulks," Physica C, vol. 494, pp. 85-88, 2013. https://doi.org/10.1016/j.physc.2013.04.012
  13. M. Muralidhar, N. Kenta, M. R. Koblischka and M. Murakami, "High critical current densities in bulk $MgB_2$ fabricated using amorphous boron," Phys. Status Solidi A, vol. 212, no. 10, pp. 2141-2145, 2015. https://doi.org/10.1002/pssa.201532108
  14. M. Takahashi, M. Okada, T. Nakane and H. Kumakura, "The influence of magnesium grain size and ball milling time on the phase formation of $MgB_2$ tapes," Supercond. Sci. Technol., vol. 22, pp. 125017, 2009. https://doi.org/10.1088/0953-2048/22/12/125017
  15. A. Martinelli, C. Tarantini, E. Lehmann, P. Manfrinetti, A. Palenzona, I. Pallecchi, M. Putti and C. Ferdeghini, "Direct TEM observation of nanometric-sized defects in neutron-irradiated $MgB_2$ bulk and their effect on pinning mechanisms," Supercond. Sci. Technol., vol. 21, pp. 012001, 2008. https://doi.org/10.1088/0953-2048/21/01/012001
  16. A. Matsumoto, H. Kumakura, H. Kitaguchi and H. Hatakeyama, "Effect of $SiO_2$ and SiC doping on the powder-in-tube processed $MgB_2$ tapes," Supercond. Sci. Technol., vol. 16, pp. 926-930, 2003. https://doi.org/10.1088/0953-2048/16/8/317
  17. A. Yamamoto, J. Shimoyama, S. Ueda, I. Iwayama, S. Horii and K. Kishio, "Effects of $B_4C$ doping on critical current properties of $MgB_2$ superconductor," Supercond. Sci. Technol., vol. 18, pp. 1323-1328, 2005. https://doi.org/10.1088/0953-2048/18/10/012
  18. R. Zeng, S. X. Dou, L. Lu, W. X. Li, C. K. Poh, J. H. Kim, J. Horvat, D. Q. Shi, J. L. Wang, P. Munroe, X. F. Wang, R. K. Zheng, S. P. Ringer, M. Rindfleisch and M. Tomsic, "Stress/strain induced flux pinning in highly dense $MgB_2$ bulks," IEEE Trans. Appl. Supercond., vol. 19, pp. 2722-2725, 2009. https://doi.org/10.1109/TASC.2009.2019577
  19. B. -H. Jun, N. -K. Kim, K. S. Tan and C. -J. Kim, "Enhanced critical current properties of in situ processed $MgB_2$ wires using milled boron powder and low temperature solid-state reaction," J. Alloys compd., vol. 492, pp. 446-451, 2010. https://doi.org/10.1016/j.jallcom.2009.11.134
  20. S. Sugino, A. Yamamoto, J. Shimoyama and K. Kishio, "Enhanced trapped field in $MgB_2$ bulk magnets by tuning grain boundary pinning through milling," Supercond. Sci. Technol., vol. 28, pp. 055016, 2015. https://doi.org/10.1088/0953-2048/28/5/055016
  21. B. -H. Jun, S. -D. Park and C. -J. Kim, "Refinement and carbon incorporation effects on the superconducting properties of $MgB_2$ through wet milling process of low purity boron powder," J. Alloys compd., vol. 535, pp. 27-32, 2012. https://doi.org/10.1016/j.jallcom.2012.04.030
  22. A. Kikuchi, Y. Yoshida, Y. Iijima, N. Banno, T. Takeuchi and K. Inoue, "The synthesis of $MgB_2$ superconductor using $Mg_2Cu$ as a starting material," Supercond. Sci. Technol., vol. 17, pp. 781-785, 2004. https://doi.org/10.1088/0953-2048/17/6/008
  23. C. P. Bean, "Magnetization of high-field superconductors," Rev. Mod. Phys., pp. 31-39, 1964.
  24. A. Revesz, T. Ungar, A. Borbely and J. Lendvai, "Dislocations and grain size in ball-milled iron powder," Nanostruct. Mater., vol. 7, pp. 779-788, 1996. https://doi.org/10.1016/S0965-9773(96)00048-7
  25. D. N. Kim, B. -H. Jun, S. -D. Park, C. -J. Kim and H. W. Park, "Effects of the size of Mg powder on the formation of $MgB_2$ and the superconducting properties," Prog. Supercond. Cryo., Korea, vol. 18, no. 4, pp. 9-14, 2016. https://doi.org/10.9714/psac.2016.18.4.009
  26. J. H. Yi, K. T. Kim, B. -H. Jun, J. M. Sohn, B. G. Kim, J. Joo and C.-J. Kim, "Pore formation in in situ processed $MgB_2$ superconductors," Physica C, vol. 469, pp. 1192-1195, 2009. https://doi.org/10.1016/j.physc.2009.05.190
  27. J. H. Kim, S. X. Dou, J. L. Wang, D. Q. Shi, X. Xu, M. S. A. Hossain, W. K. Yeoh, S. Choi and T. Kiyoshi, "The effects of sintering temperature on superconductivity in $MgB_2$/Fe wires," Supercond. Sci. Technol., vol. 20, pp. 448-451, 2007. https://doi.org/10.1088/0953-2048/20/5/007
  28. J. H. Kim, S. X. Dou, D. Q. Shi, M. Rindfleisch and M. Tomsic, "Study of MgO formation and structural defects in in situ processed $MgB_2$/Fe wires," Supercond. Sci. Technol., vol. 20, pp. 1026-1031, 2007. https://doi.org/10.1088/0953-2048/20/10/023
  29. S. K. Chen, B. A. Glowacki, J. L. MacManus-Driscoll, M. E. Vickers and M. Majoros, "Influence of in situ and ex situ $ZrO_2$ addition on the properties of $MgB_2$," Supercond. Sci. Technol., vol. 17, pp. 243-248, 2004. https://doi.org/10.1088/0953-2048/17/2/002
  30. Y. Chen, J. F. Gerald, J. S. Williams and S. Bulcock, "Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling," Chem. Phys. Lett., vol. 299, pp. 260-264, 1999. https://doi.org/10.1016/S0009-2614(98)01252-4
  31. P. Scherrer, "Bestimmung der grosse und der inneren struktur von kolloidteilchen mittels rontgenstrahlen," Nachr. Ges. Wiss. Gottingen, vol. 26, pp 98-100, 1918.