DOI QR코드

DOI QR Code

Refinement of Gd2O3 inclusions in the GdBa2Cu3O7-δ films fabricated by the RCE-DR process

  • Park, I. (Department of Materials Science & Engineering and Research Institute of Advanced Materials (RIAM), Seoul National University) ;
  • Oh, W.J. (Department of Materials Science & Engineering and Research Institute of Advanced Materials (RIAM), Seoul National University) ;
  • Lee, J.H. (Superconductor, Nano & Advanced Materials Corporation) ;
  • Moon, S.H. (Superconductor, Nano & Advanced Materials Corporation) ;
  • Yoo, S.I. (Department of Materials Science & Engineering and Research Institute of Advanced Materials (RIAM), Seoul National University)
  • Received : 2018.12.17
  • Accepted : 2018.12.30
  • Published : 2018.12.31

Abstract

To improve in-field critical current densities ($J_c$) of $GdBa_2Cu_3O_{7-{\delta}}$ (GdBCO) coated conductors(CCs) fabricated by the reactive co-evaporation by deposition and reaction (RCE-DR) process, employing the nominal composition of Gd:Ba:Cu=1:1:2.5, we tried to refine the $Gd_2O_3$ particles trapped in the GdBCO superconducting matrix. For this purpose, we carefully selected the processing conditions on the stability phase diagram of GdBCO for this composition. By lowering the growth temperature of $Gd_2O_3$ in the liquid, we could refine the average particle size of $Gd_2O_3$ particles trapped in the GdBCO matrix and also achieve the zero-resistive transition temperatures ($T_{c,zero}$) of 92.3~94.2 K. Unfortunately, however, it was unsuccessful to achieve enhanced in-field $J_c$ values from these samples because of an air-contamination of the amorphous precursor film before its conversion into crystalline GdBCO film, suggesting that any exposure of the amorphous precursor film to air is fatal in obtaining high performance GdBCO CCs via the RCE-DR process.

Keywords

CJJOCB_2018_v20n4_46_f0001.png 이미지

Fig. 1. The schematic of reel-to-reel tube furnace apparatus.

CJJOCB_2018_v20n4_46_f0002.png 이미지

Fig. 2. The stability phase diagram of GdBCO for the nominal composition of Gd:Ba:Cu = 1:1:2.5 [15] with different fabrication process paths.

CJJOCB_2018_v20n4_46_f0003.png 이미지

Fig. 3. The XRD patterns of the sample fabricated by RCE-DR in SuNAM (a), and the samples after growth at (b) 861°C, (c) 851°C, (d) 841°C, (e) 831°C, and (f) 821°C in 30 mTorr O2 for the growth of Gd2O3 and at 861°C in the PO2 of 150 mTorr for the conversion into GdBCO.

CJJOCB_2018_v20n4_46_f0004.png 이미지

Fig. 4. The ρ-T curves for the GdBCO CC fabricated by RCE-DR in SuNAM (a), and also for GdBCO films grown at 861°C in 150 mTorr after the heat-treatment at (b) 861°C, (c) 851°C, (d) 841°C, (e) 831°C, and (f) 821°C in 30 mTorr for the size control of Gd2O3 particles.

CJJOCB_2018_v20n4_46_f0005.png 이미지

Fig. 5. Z-contrast STEM micrographs of the sample (a) 861-861, (b) 841-861, and (c) 821-861, (1) Gd, (2) Ba, and (3) Cu elements spectral images analysed for the its samples, respectively.

CJJOCB_2018_v20n4_46_f0006.png 이미지

Fig. 6. Z-contrast STEM micrograph of the sample (a) and (b) 821-861, (c) Gd, (d) Ba, and (e) Cu elements spectral images analysed for the sample 821-861.

References

  1. M. W. Rupich, X. Li, C. Thieme, S. Sathyamurthy, S. Fleshler, D. Tucker, E. Thompson, J. Schreiber, J. Lynch, D. Buczek, K. DeMoranville, J. Inch, P. Cedrone, and J. Slack, "Advances in second generation high temperature superconducting wire manufacturing and R&D at American Superconductor Corporation," Superconductor Science and Technology, vol. 23(1), 014015, 2010 https://doi.org/10.1088/0953-2048/23/1/014015
  2. H. Kutami, T. Hayashida, S. Hanyu, C. Tashita, M. Igarashi, H. Fuju, and Y. Hanada, "Progress in research and development on long length coated conductors in Fujikura," Physica C-Superconductivity and Its Applications, vol. 469(15-20), pp. 1290-1293, 2009. https://doi.org/10.1016/j.physc.2009.05.135
  3. V. Selvamanickam, Y. Chen, X. Xiong, Y. Y. Xie, M. Martchevski, A. Rar, Y. Qiao, T. M. Schmidt, A. Knoll, K. P. Lenseth, and C. S. Weber, "High Performance 2G Wires: From R&D to Pilot-Scale Manufacturing," IEEE Transactions on Applied Superconductivity, vol. 19(3), pp. 3225-3230, 2009. https://doi.org/10.1109/TASC.2009.2018792
  4. S. M. Choi, J. W. Lee, G. H. Shin, J. H. Lee, G. W. Hong, S. H. Moon, and S. I. Yoo, "Characteristics of high-Jc GdBCO coated conductors fabricated by the RCE-DR process," IEEE Transactions on Applied Superconductivity, vol. 23(3), 8001004, 2013. https://doi.org/10.1109/TASC.2012.2234814
  5. J. H. Lee, H. Lee, J. W. Lee, S. M. Choi, S. I. Yoo, and S. H. Moon, "RCE-DR, a novel process for coated conductor fabrication with high performance," Superconductor Science and Technology, vol. 27(4), 044018, 2014 https://doi.org/10.1088/0953-2048/27/4/044018
  6. S. R. Foltyn, J. L. MacManus-Driscoll, Q. X. Jia, B. Maiorov, H. Wang, and M. Maley, "Materials science challenges for high-temperature superconducting wire," Nat. Mater., vol. 6, pp. 631-642, 2007. https://doi.org/10.1038/nmat1989
  7. K. Matsumoto, T. Horide, K. Osamura, M. Mukaida, Y. Yoshida, A. Ichinose, and S. Horii, "Enhancement of critical current density of YBCO films by introduction of artificial pinning centers due to the distributed nano-scaled $Y_2O_3$ islands on substrates," Physica C, vol. 412, pp. 1267-1271, 2004.
  8. J. L. MacManus-Driscoll, S. R. Foltyn, Q. X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M. E. Hawlry, M. Maley, and D. E. Peterson, "Strongly enhanced current densities in superconducting coated conductors of $YBa_2Cu_3O_{7-x}+BaZrO_3$," Nature Mater. vol. 3, pp. 439-443, 2004. https://doi.org/10.1038/nmat1156
  9. Y. Yamada, K. Takahashi, H. Kobayashi, M. Konishi, T. Watanabe, A. Ibi. T. Muroga, S. Miyata, T. Kato, T. Hirayama, and Y. Shiohara, "Epitaxial nanostructure and defects effective for pinning in $ Y(RE)Ba_2Cu_3O_{7-x}$ coated conductors," Appl. Phys. lett., vol. 87, 132502, Sep. 2005. https://doi.org/10.1063/1.2061874
  10. W. Schindler, B. Roas, G. Saemann-Ischenko, L. Schultz, and H. Gerstenberg, "Anisotropic enhancement of the critical current density of epitaxial $ YBa_2Cu_3O_{7-x}$ films by fast neutron irradiation," Physica C, vol. 169, pp. 117-122, 1989.
  11. B. Roas, B. Hensel, G. Saemann-Ischenko, and L. Schultz, "Irradiation-induced enhancement of the critical current density of epitaxial $ YBa_2Cu_3O_{7-x}$ thin films," Appl. Phys. Lett. vol. 54, pp. 1051-1053, 1989. https://doi.org/10.1063/1.101423
  12. Goyal, S. Kang, K. J. Leonard, P. M. Martin, A. A. Gapud, M. Varela, M. Parathanman, A. O. Ijaduola, E. D. Specht, J. R. Thopson, D. K. Christen, S. J. Pennycook, and F. A. list, "Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in $YBa_2Cu_3O_{7-{\delta}}$ films," Superconductor Science and Technology, vol. 18(11), pp.1533-1538, 2005. https://doi.org/10.1088/0953-2048/18/11/021
  13. Senatore, C. Barth, M. Bonura, M. Kulich, and Mondonico, G, "Field and temperature scaling of the critical current density in commercial REBCO coated conductors." Superconductor Science and Technology, vol. 29(1), 014002, 2015. https://doi.org/10.1088/0953-2048/29/1/014002
  14. J. L. MacManus-Driscoll, M. Bianchetti, A. Kursumovic, G. Kim, W. Jo, H. Wang, J. H. Lee, G. W. Hong, and S. H. Moon, "Strong pinning in very fast grown reactive co-evaporated $GdBa_2Cu_3O_7$ coated conductors," APL Materials, vol. 2(8), 086103, 2014. https://doi.org/10.1063/1.4893339
  15. I. Park, W. J. Oh, J. H. Lee, S. H. Moon, and S. I. Yoo, "Stability phase diagram of $GdBa_2Cu_3O_{7-d}$ for the nominal composition of Gd:Ba:Cu = 1:1:2.5 in low oxygen pressures," IEEE Transactions on Applied Superconductivity, vol. 28(4), 7200105, 2018