• Title/Summary/Keyword: Superconducting cable

Search Result 287, Processing Time 0.023 seconds

A Study on the Application of DC HTS cable systems to enhance power transfer limits of a grid-connected offshore wind farm

  • Hur, Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.2
    • /
    • pp.97-103
    • /
    • 2015
  • This paper introduces two on-going projects for DC high temperature superconducting (HTS) cable systems in South Korea. This study proposes the application of DC HTS cable systems to enhance power transfer limits of a grid-connected offshore wind farm. In order to develop the superconducting DC transmission system model based on HTS power cables, the maximum transfer limits from offshore wind farm are estimated and the system marginal price (SMP) calculated through a Two-Step Power Transfer (TSPT) model based on PV analysis and DC-optimal power flow. The proposed TSPT model will be applied to 2022 KEPCO systems with offshore wind farms.

The propulsive plan on the standardization in 22.9kV, 50MVA HTS power cable (22.9kV, 50MVA급 초전도 전력케이블의 표준화 추진 방안)

  • Choi, S.J.;Lee, S.J.;Sim, K.D.;Cho, J.W.;Lee, S.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.48-51
    • /
    • 2008
  • The standardization on superconducting application techniques has been focused only in testing method or material itself, but, recently, it is actively proceeded by superconducting technical committee(TC) of international electro technical commission(IEC). In this paper, the standardization organization and its necessary process is introduced and the standardization technique for 22.9kV, 50MVA HTS power cable is prescribed. Throughout this research, it is possible to take priorities on the standardization technique in HTS power cable application. And moreover it can also contributes to the commercialization of HTS power cable.

Characteristics of AC Loss in a Single Layer High-$T_{c}$ Superconducting Model Cable under Uniform Current Distribution (균일 전류분포에서 단층 고온초전도 모델케이블의 교류손실 특성)

  • 정재훈;류경우
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.371-373
    • /
    • 2002
  • High current density Bi-2223 tapes have recently become commercially available. The ac loss is an important issue in the design of high-T$_{c}$ superconducting power cables. In such complicated devices, special caution is required in the placing of voltage leads for measuring the in-phase voltage. In this paper, the ac losses for different contacts and arrangements of voltage leads have been experimentally investigated in a single layer model cable and discussed.d.

  • PDF

The Evaluation of AC Loss in a Single Layer High-$T_{c}$ Superconducting Model Cable (단층 고온초전도 모델케이블의 교류손실 평가)

  • 정재훈;류경우;황시돌
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.210-212
    • /
    • 2003
  • High current density Bi-2223 tapes have recently become commercially available. The ac loss is an important issue in the design of high-T$_{c}$ superconducting power cables. In such complicated devices, special caution is required in the placing of voltage leads for measuring the in-phase voltage. In this paper, the ac losses for different contacts and arrangements of voltage leads have been experimentally investigated in a single layer model cable and discussed.d.

  • PDF

Analysis of ramp-rate limitation and current redistribution in two-strand superconducting cable (두 가닥 초전도 케이블에서 자속변화한계와 전류 재분배 해석)

  • 김석호;정상권
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.45-48
    • /
    • 2003
  • Ramp-rate limitation is a serious obstacle for successful operation of fast charging and discharging magnet Ramp-rate limitation is hard to expect or fully investigate due to its electric and thermo-hydraulics couplings. In this paper, the simplest case of ramp-rate limitation is investigated with two-strand superconducting cable model considering transient heat transfer The simulation results are compared with the experimental results.

  • PDF

Economic analysis of a 22.9 kV HTS power cable and conventional AC power cable for an offshore wind farm connections

  • Jung, Ga-Eun;Dinh, Minh-Chau;Sung, Hae-Jin;Park, Minwon;Yu, In-Keun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.60-64
    • /
    • 2018
  • As the offshore wind farms increase, interest in the efficient power system configuration of submarine cables is increasing. Currently, transmission system of the offshore wind farm uses almost AC system. High temperature superconducting (HTS) power cable of the high capacity has long been considered as an enabling technology for power transmission. The HTS cable is a feasible way to increase the transmission capacity of electric power and to provide a substantial reduction in transmission losses and a resultant effect of low CO2 emission. The HTS cable reduces its size and laying sectional area in comparison with a conventional XLPE or OF cable. This is an advantage to reduce its construction cost. In this paper, we discuss the economic feasibility of the 22.9 kV HTS power cable and the conventional AC power cables for an offshore wind farm connections. The 22.9 kV HTS power cable cost for the offshore wind farm connections was calculated based on the capital expenditure and operating expense. The economic feasibility of the HTS power cable and the AC power cables were compared for the offshore wind farm connections. In the case of the offshore wind farm with a capacity of 100 MW and a distance of 3 km to the coast, cost of the 22.9 kV HTS power cable for the offshore wind farm connections was higher than 22.9 kV AC power cable and lower than 70 kV AC power transmission cable.

Influence of Thermal Cycle Test of a 22.9 kV High Temperature Superconducting Cable System (22.9 kV 초전도케이블 시스템의 Thermal Cycle Test 영향)

  • Sohn, S.H.;Lim, J.H.;Yang, H.S.;Ryoo, H.S.;Choi, H.O.;Sung, T.H.;Kim, D.L.;Hwang, S.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.242-242
    • /
    • 2007
  • To verify the applicability of High Temperature Superconducting (HTS) cable system into the real grid, the HTS cable system with the specification of 22.9 kV, 1250 A, 100 m long was installed in the second quarter of 2006, and the long term field test has been in progress at the KEPCO's Gochang power testing yard. Apart from the conventional power cable, HTS cable system requires sufficient thermo-mechanical strength to endure a large temperature difference. To date, the KEPCO HTS cable system was cooled down and warmed to the room temperature several times to investigate the influence of thermal cycles experimentally. Dielectric properties, critical current dependance and heat losses were evaluated at each step of thermal cycle. The test results showed that thermal cycle did not induce the degradation of dielectric properties, and the critical current decreased to 5 % of the initial value.

  • PDF

Current Distribution and Loss Calculation of a Multi-layer HTS Transmission Cable (다층 고온 초전도케이블에서의 전류분류 및 손실 계산)

  • 이승욱;차귀수;이지광;한송엽
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.29-32
    • /
    • 2000
  • Superconducting transmission cable is one of interesting part in power application using high temperature super-conducting wire as transformance. One important parameter in HTS cable design is transport current distribution because it is related with current transmission capacity and loss. In this paper, we present the calculation theory of current distribution for multi-layer cable using the electric circuit model and in example, calculation results of current distribution and AC loss in each layer of 4-layer HTS transmission cable.

  • PDF

Construction and Tests of 700A class HTS Power Cable Core (700A급 고온초전도 케이블코아 제작 및 평가)

  • 조전욱;하홍수;정종만;조영식;성기철;오상수;권영길;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.55-57
    • /
    • 2000
  • In this paper we present the results of tests for the high-Tc superconducting (HTS) power cable core. A prototype HTS cable cores have been constructed using Bi-2223 based Ag-sheathed HTS tapes. HTS cable cores has been tested at 77K with DC currents. Results shows that the cable cores carrying up to 700A DC and self-field effects are discussed.

  • PDF

Review of the Conceptual Design for the use of the HTS Cable to Power System (고온초전도케이블의 계통적용을 위한 개념설계)

  • Choi, Sang-Bong;Kim, Dae-Kyeong;Jeong, Seong-Hwan;Moon, Young-Hwan;Seong, Ki-Chul;Kim, Hak-Man
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.253-255
    • /
    • 2002
  • The necessity of compact high temperature super conducting cables is more keenly felt in densely populated metropolitan areas. As the compact high temperature superconducting cables that can be installed in ducts and tunnels can reduce construction cost and make the use of underground space more effective, the effect of introducing it to power system will be huge. For this study, Seoul, Korea is selected as a review model, the loads are estimated by scenario based on a survey and analysis of 345kV and 154kV power supply networks in this area. Based on this, the following items on urban transmission system are examined. (1) A method of constructing a model system to introduce high temperature superconducting cables to metropolitan areas is presented. (2) A case study through the analysis of power demand is conducted, and the amount of high temperature superconducting cable to be introduced by scenario is examined. (3) The economy involved in expanding existing cables and introducing high temperature superconducting cables(ducts or tunnels) following load increase in urban areas is examined and compared. (4) The maximum external diameter of HTS cable to accommodate exiting ducts based on the design standards for current cable ducts is calculated. (5) The voltage level that can be accommodated by existing ducts is examined.

  • PDF