• Title/Summary/Keyword: Superconducting Element

Search Result 272, Processing Time 0.027 seconds

Magnetic Field Calculation of Toroidal Winding with Circular Section (단면이 원형인 토로이드 권선의 자속밀도 계산)

  • Lee, Sang-Jin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.28-31
    • /
    • 2010
  • A magnetic field calculation method for toroidal type winding which has circular section was developed. At first, the equation for magnetic field by single filament coil was extended using numerical integration to estimate the entire interesting region of solenoid, especially winding region itself. And then, the magnetic field by toroidal arrangement of solenoids was computed with a coordinate transformation of vector fields. The superconducting magnet with toroidal arrangement can be made up of several tens of solenoid type double pancake windings for some applications such as superconducting magnetic energy storage system(SMES). In this system, the field calculation on the high-Tc superconducting(HTS) tape itself is very important because the entire system can be reached to a fault by magnetic stress of conductor or the critical current of superconducting tape can be dramatically reduced under its self field condition. To make matters worse, 3-dimensional analysis is indispensable for this type of magnet and the most of commercial programs with finite element method can be taken too much time for analysis and design. In this paper, a magnetic field calculation method for toroidal type winding with circular section was induced.

Analysis on Quench Propagation Charactreristics of HTS Tape (고온초전도 테이프 선재의 \ulcorner치 전파 특성 해석)

  • 이지광;김지훈;류경우;차귀수;한송엽
    • Progress in Superconductivity and Cryogenics
    • /
    • v.2 no.1
    • /
    • pp.36-39
    • /
    • 2000
  • The main issues for the power application of high Tc superconducting tape are lower AC loss and higher stability conditions. HTS tape has large stability margin by high heat capacity of superconductor itself and high temperature margin. But, it can be damaged by continuous heat generation at quench point, because normal zone propagation velocity by generating heat is very low. Here, we analyze the quench propagation characteristics using finite element method for BSCCO-2223 HTS tape.

  • PDF

Analysis Operating Characteristics of Matrix-Type Superconducting Fault Current Limiter in Ground Faults of Power Grid (전력계통의 지락사고에 대한 매트릭스형 초전도 한류기의 동작특성)

  • Oh, Kum-Gon;Cho, Yong-Sun;Choi, Hyo-Sang;Oh, Seong-Bo;Kim, Deog-Goo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.14-20
    • /
    • 2009
  • It is very important for power stability to suppress the excessive fault current happened frequently in the real power grid The superconducting fault current limiter (SFCL) is one of the most effective ways to reduce the fault current among the facilities developed so far. In this paper, we have investigated the operating characteristics of the power grid with the SFCL according to three types such as the single, double and triple line-to-ground faults. In addition, we analyzed the consumption power of the superconducting units based on the working data of the SFCL. We confirmed that the fault current could be limited lower than its peak value to 85 percentage in initial fault condition and to 85 percentage after one cycle in the matrix-type SFCL. The consumption powers of the superconducting units were almost equal by reduction of the difference of the critical current between superconducting units element.

EDDC deposition system for 100m long superconducting coated conductor (100m 급 초전도선재 제조용 EDDC 증착시스템)

  • Kim, Ho-Sup;Ha, Hong-Soo;Oh, Sang-Soo;Ko, Rock-Kil;Yang, Ju-Saeng;Kim, Tae-Hyung;Song, Kyu-Jeong;Ha, Dong-Woo;Park, Yu-Mi;Youm, Do-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.18-19
    • /
    • 2005
  • EDDC(Evaporation using Drum in Dual Chamber) deposition system was manufactured for 100m long superconducting coated conductor. It is composed of reaction chamber, evaporation chamber and differential chamber. The drum is located across the differential and exposed to both of the evaporation chamber and the reaction chamber, and the tape is wound on the drum. The elements of superconducting material are co-evaporated from respective element boats in the evaporation chamber and deposited on the drum and reacted with oxygen in the reaction chamber. This process repeats by rotating the drum. When the total pressure of the reaction chamber was 5 mTorr, that of the evaporation chamber was $5{\sim}10^{-5}$Torr. This atmosphere can be achieved by means of differential pumping. There are four evaporator in the evaporation chamber. One is the radiation heating evaporator and the others are the high frequency induction evaporator. EDDC is one of promising methods for commercialization of superconducting coated conductor.

  • PDF

A Characteristic Analysis of Heater Triggered Persistent Current System with 2G High Tc Superconducting Tape (차세대 고온초전도 선재를 이용한 영구전류시스템의 히터트리거 특성 해석)

  • Park, Dong-Keun;Kang, Hyoung-Ku;Yang, Seong-Eun;Ahn, Min-Cheol;Yoon, Yong-Soo;Yoon, Kyung-Yong;Lee, Sang-Jin;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1228-1230
    • /
    • 2005
  • This paper deals with design of heater trigger switching in a persistent current system(PCS) by finite element method(FEM) analysis of YBCO coated conductor(CC) tape. Most promising superconducting wire is YBCO coated conductor tape in these days for its high n value and critical current independency from external magnetic field. It is expected to be used many superconducting application such as fault current limiter and cable etc. The superconducting magnet which is operated in persistent current mode in SMES, NMR, MRI and MAGLEV has many advantages such as a high uniformity of a magnetic field and reducing a thermal loss. A PCS system consists of magnet power supply (MPS) which energized current to a magnet, heater, a coated conductor tape for switching, and superconducting magnet. In this paper, the characteristic of thermal quench of the YBCO CC tape and BSCCO tape by heater trigger analyzed by FEM. And optimal length of heater is calculated by temperature and time analysis. This heater trigger analysis is expected to be a basic concept of PCS application design.

  • PDF

Analysis on the Magnetic Field Distribution of Low-Tc Superconducting Power Supply Using Finite Element Method (유한요소법을 이용한 저온초전도전원장치의 자기장분포 해석)

  • Bae, Duck-Kweon;Yoon, Yong-Soo;Kim, Ho-Min;Ahn, Min-Cheol;Kim, Yeong-Sik;Han, Tae-Su;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.739-741
    • /
    • 2001
  • Magnetic field distribution of rotating flux type Low-Tc superconducting (LTS) power supply with respect to the applied current on exciters is investigated in detail by using Finite Element Method (FEM). LTS power supply consists of two exciters, a rotor, a stator and superconductor foil attached to the inner surface of the stator and LTS load. The current pumping of LTS power supply is induced by partial-quenching and recovery of superconductor foil. For this reason, magnetic flux density on superconductor foil must be sufficiently greater than the its critical magnetic density. In this analysis, the normal spot on superconductor foil appears more than 10A of excitation current. The results of this analysis are calculated and compared with the experimental results.

  • PDF

Transient Characteristic Analysis of Damper in Superconducting Synchronous Generator by the Compensated 2D Analysis Model (보정된 2차원 해석모델에 의한 초전도 동기발전기의 댐퍼 과도특성 해석)

  • Chun, Yon-Do;Lee, Hyung-Woo;Lee, Ju;Hong, Jung-Pyo;Kwon, Young-Kil;Ryu, Kang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.2
    • /
    • pp.93-101
    • /
    • 2000
  • This paper presents a novel method for the transient of eddy currents in the dampers of a super-conducting synchronous generator(SCG). The method proposes a 2-D corrected model which takes into account the influence of leakage fluxes of the field winding ends by increasing the effective air gap in order to consider the high precision of the analysis for the conventional 2-D model. The electromagnetic fields for the corrected model are analyzed by the time-stepping finite element method, thus the eddy currents in the dampers and electro-motive forces(EMF) in the stator windings are calculated. As the results, it is proved the presented method is comparatively accurate by comparing measured phase EMF values and the simulation ones, where about 6.4% error at the maximum value of EMF is occurred between them.

  • PDF

Sticking Characteristics in Bi2Sr2CanCun+1Ox Thin Films Fabricated by using the Evaporation Method to Improve the Sticking Ratio (부착율 개선을 위해 증발 법으로 제작한 Bi2Sr2CanCun+1Ox 박막의 부착 특성)

  • 천민우;박용필
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.1029-1034
    • /
    • 2003
  • The Bi$_2$Sr$_2$Ca$_{n}$Cu$_{n+1}$ O$_{x}$, superconducting thin films arc fabricated by using the sputtering and evaporation method. Because we confirmed the sticking ratio of Bi element in the Bi$_2$Sr$_2$Ca$_{n}$Cu$_{n+1}$ O$_{x}$ superconducting thin film fabricated by using the sputtering method was much lower than the expected value, to get the enough number of the flakes of Bi, faraday cup was used to evaporate Bi clement. As a result of the fabrication, Bi 2201 and Bi 2212 single phases could be made by the optima of deposition condition. And we confirmed the sticking coefficient of Bi element was clearly related to the temperature change of the substrate and the generation of Bi22l2 phase

Fault Current Limiting Characteristic of Flux-Lock Type HTSC Fault Current Limiter (자속구속형 고온초전도 전류제한기 사고전류제한 특성)

  • Lim, Sung-Hun;Choi, Myung-Ho;Park, Bok-Kee;Song, Jee-Joo;Park, Dae-Hee;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.105-108
    • /
    • 2002
  • In this paper, we investigated the fault current limiting characteristic of flux-lock type High-Tc superconducting fault current limiter(HTSC-FCL), which is comprised of a flux-lock reactor and an external magnetic field coil covering the HTSC element In this HTSC-FCL, the initial limiting current level can be controlled by adjusting the inductance of the each coil. Furthermore, the fault current limiting characteristics of HTSC-FCL can be improved by applying 'the external magnetic field into the HTSC element We performed the computer simulation by numerical analysis about the flux-lock type HTSC-FCL and compared the results of experiment with simulation ones. We can obtain the same results from both the computer simulation and the experiment except for the time immediately after fault occurs.

  • PDF

AC transport current loss analysis for a face-to-face stack of superconducting tapes

  • Yoo, Jaeun;Youm, Dojun;Oh, SangSoo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.34-38
    • /
    • 2013
  • AC Losses for face to face stacks of four identical coated conductors (CCs) were numerically calculated using the H-formulation combined with the E-J power law and the Kim model. The motive sample was the face to face stack of four 2 mm-wide CC tapes with 2 ${\mu}m$ thick superconducting layer of which the critical current density, $J_c$, was $2.16{\times}10^6A/cm^2$ on IBAD-MgO template, which was suggested for the mitigation of ac loss as a round shaped wire by Korea Electrotechnology Research Institute. For the calculation the cross section of the stack was simply modeled as vertically aligned 4 rectangles of superconducting (SC) layers with $E=E_o(J(x,y,t)/J_c(B))^n$ in x-y plane where $E_o$ was $10^{-6}$ V/cm, $J_c$(B) was the field dependence of current density and n was 21. The field dependence of the critical current of the sample measured in four-probe method was employed for $J_c$(B) in the equation. The model was implemented in the finite element method program by commercial software. The ac loss properties for the stacks were compared with those of single 4 cm-wide SC layers with the same critical current density or the same critical current. The constraint for the simulation was imposed in two different ways that the total current of the stack obtained by integrating J(x,y,t) over the cross sections was the same as that of the applied transport current: one is that one fourth of the external current was enforced to flow through each SC. In this case, the ac loss values for the stacks were lower than those of single wide SC layer. This mitigation of the loss is attributed to the reduction of the normal component of the magnetic field near the SC layers due to the strong expulsion of the magnetic field by the enforced transport current. On the contrary, for the other case of no such enforcement, the ac loss values were greater than those of single 4cm-wide SC layer and. In this case, the phase difference of the current flowing through the inner and the outer SC layers of the stack was observed as the transport current was increased, which was a cause of the abrupt increase of ac loss for higher transport current.