• 제목/요약/키워드: Super plasticizer

검색결과 34건 처리시간 0.024초

고로슬래그시멘트를 사용한 콘크리트 배합설계에 관한 연구 (A Study of Concrete Mix Proportioning Design using Blast-furnace Slag Cement)

  • 백광섭;차태환;노재호;박연동;윤재환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.113-118
    • /
    • 1995
  • The purpose of this study is to suggest concrete mix proportioning design using Blast-furnace slag cement. The mix conditions are specified by concrete strength(180~400kg/$\textrm{cm}^2$), slump$(15\pm2cm)$m and air volume$(4.5\pm1%)$. From the result of concrete mix proportioning design using Blast-furnace slag cement, unit water content can be reduced by 3~8% comparing with OPC. The relationship between strength at 28days and cement water ratio is as follow. when blast-furnace slag cement is used: $\sigma_{28}$=304.OC/W-296.8. Super-plasticizer have to be used to get a slump of 15cm when water/cement ratio is less than 45%.

  • PDF

블리딩 저감용 AE감수제 개발에 관한 기초적 연구 (A Fundamental Study on the Development of AE Water Reducing Agent for Reduction of Bleeding)

  • 문학용;김한준;김규용;신동인;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.75-78
    • /
    • 2003
  • This study is to investigate the probability to develop the AE Water-reducing agent which can decrease the bleeding by mixing melamine type super-plasticizer(SP) and methyl cellulose(MC) viscosity agent. According to the result, as the mixing ratio of melamine type SP and MC viscosity agent increases, the bleeding is reduced due to a increase of the air content. When the mixing ratio of melamine type SP and MC viscosity agent is 1:2 and 1;3 at the water content of 165kg/$m^3$ and 175kg/$m^3$ respectively, slump and air content are satisfied and bleeding is reduced to some extent, so this is determined as the mixing ratio of AE water reducing agent for reduction of bleeding. It is prove that the developed AE water reducing agent for reduction of bleeding can reduce the amount of bleeding and prohibit the plastic shrinkage crack by slowing down the bleeding speed. Compressive strength of hardened concrete does not make any difference in comparison with plain concrete.

  • PDF

장시간 운반에 따라 저하된 콘크리트의 품질회복에 관한 연구 (A Study on the Performance Restoration of Deteriorated Concrete by Long Distance Delivery)

  • 배장춘;김호림;황인성;이형원;양성환;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2004년도 학술대회지
    • /
    • pp.7-10
    • /
    • 2004
  • This paper investigated the possibility of quality restoration of deteriorated concrete caused by long distance delivery using chemical admixtures such as superplasticizer. AE agent and retarding agent. According to test results, long distance delivery lead to reducing fluidity and air content markedly, while setting time accelerated. Quality restoration agent(QRA) was made by combining super- plasticizer. AE agent and retarding agent with the proportion of 1:0.0025:0.1. It was confirmed that deteriorated concrete achieved quality restoration with the level of target slump, air content and setting time without strength loss when using QRA with proper amount.

  • PDF

균열주입재로서 초미립자 시멘트의 이용 (Use of Ultra Fine Cement Particles as Crack Repair Materials)

  • 이종열;정연식;이웅종;양승규;채재홍
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.1205-1210
    • /
    • 2000
  • In this research we made the mean cement particle size 4 $\mu\textrm{m}$ which can penetrate even minor cracks based on the theory of J.K. Michel who reported particles can penetrate the crack of width up to 3 times of maximum particle size. The cement slurries were produced by adding super plasticizer. The slurries were tested with slurry characterization methods and its rheological properties were characterized. The early hydrated phenomena of ultra fine cement were observed by SEM, XRD and DSC during 24 hours. Mechanical properties of hardened slurry with JIS molds were also tested in 3, 7 and 28 days. The cracked specimens which were repaired with slurries produced various conditions were tested after 3, 7 and 28 days curing in the air and adhesion properties were characterized.

혼합재를 사용한 고강도 콘크리트의 제조와 물성에 관한 연구 (A Study on Production and Physical Properties of High-Strength Concrete with Blending Additives)

  • 정용;심용수;김원기;정재동
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.15-20
    • /
    • 1991
  • High-strength concrete were produced with super-plasticizer, silica fume, fly ash and blast furnace slag powder. Topics investigated inclued mix proportion, and effects of unit weight of binder, W/C ratio, additive type on the physical properties of high-strength concrete. As the result, at 20% of silica fume, unit weight of binder 700kg/$\textrm{m}^3$ and W/C=0.24, 28days compressive strength of concrete was over 1,000kgf/$\textrm{cm}^2$. And in cases of blending with silica fume 10% and fly ash or slag 10%, it was able to produce economical high-strength concrete with 28 days strength similar to silica fume 20% only, and higher strength after 90days.

  • PDF

강섬유 특성이 숏크리트 품질에 미치는 영향 (Quality Evaluation of shotcrete due to Properties of Steel Fiber)

  • 류종현;김동원;전현규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.673-676
    • /
    • 2006
  • Steel FibreReinforced Shotcrete(SFRS) is one of the main tunnel support along with the rock bolt during the excavation and after the completion of the tunnel. In the standard qualification of the SFRS defined by Korea Highway Corporation, 28 day core specimen has to meet the compressive strength of 19.6 MPa and over 90 % fibre contents. Furthermore, for the 28 days brick shaped specimen made by shooting, flexural strength should be over 4.4 MPa and flexural toughness ratio which can be calculated from flexural toughness factor has to meet more than 68% of flexural strength. In shotcrete, accelerating agent is added for the rapid strength development. Silicate and aluminate type agents are known to develop shotcrete strength rapidly, however, has such problem to degrade the middle and long term strength. Hence, using poly carboxylic super plasticizer, it was aimed to enhance the quality of the shotcrete with the lower water-cement ratio and the same level of workability. The present paper shows the part of the field test result and its analysis.

  • PDF

Durability of high performance sandcretes (HPS) in aggressive environment

  • Benamara, Dalila;Tebbal, Nadia;Rahmouni, Zine El Abidine
    • Advances in concrete construction
    • /
    • 제8권3호
    • /
    • pp.199-206
    • /
    • 2019
  • High performance sandcretes (HPS) are new concretes characterized by particles having a diameter less than 5 mm, as well as very high mechanical strength and durability. This work consists in finding solutions to make sandcretes with good physico-mechanical and durability properties for this new generation of micro-concrete. However, upgrading ordinary sandcrete into high performance sandcrete (HPS) requires a thorough study of formulation parameters (equivalent water/binder ratio, type of cement and its dosage, kind and amount of super plasticizer, and gravel/sand ratio). This research study concerns the formulation, characterization and durability, in a sulphate environment, of a high performance sandcrete (HPS), made from local materials. The obtained results show that the rheological properties of fresh concrete and mechanical strength differ with the mineralogy, density and grain size distribution of sands and silica fume used.

Investigation towards strength properties of ternary blended concrete

  • Imam, Ashhad;Moeeni, Shahzad Asghar;Srivastava, Vikas;Sharma, Keshav K
    • Advances in concrete construction
    • /
    • 제11권3호
    • /
    • pp.207-217
    • /
    • 2021
  • This study relates to a production of Quaternary Cement Concrete (QCC) prepared by using Micro Silica (MS), Marble Dust (MD) and Rice Husk Ash (RHA), followed by an investigation towards fresh and hardened properties of blended concrete. A total of 39 mixes were cast by incorporating different percentages of MS (6%, 7% and 8%), MD (5%, 10% and 15%) and RHA (5%, 10%, 15% and 20%) as partial replacement of Ordinary Portland Cement. The workability of fresh concrete was maintained in the range of 100±25 mm by adding 0.7% of Super Plasticizer in the mix. Optimum mechanical strength was observed at combination of 8% MS+5% MD+10% RHA. Marble dust replacement from 10 to 15% and Rice husk ash replacements from 15 to 20% depicted a substantial reduction in compressive strength at all ages. Durability parameter with respect to water absorption at 28 days shows an increasing trend as the percentage of blending increases.

Ready mixed concrete behavior of granulated blast furnace slag contained cement

  • Karim, M. Razaul;Islam, A.B.M. Saiful;Chowdhury, Faisal I.;Rehman, Sarder Kashif Ur;Islam, Md. Rabiul
    • Computers and Concrete
    • /
    • 제21권2호
    • /
    • pp.139-147
    • /
    • 2018
  • Due to enhanced construction requirement, ready mixed concrete are being popular day by day. The current study aimed to develop ready mixed concrete using GBFS contained cement and determine its properties of fresh and hardened states. A real scale experiment was set up in a ready mixed plant for measuring workability and compressive strength. The workability was tested after mixing (within 5 minutes), 30, 60, 90, 120 and 150 minutes of the running of bulk carrier. The ready mixed carrier employed spinning motion i.e., rotating around its axis with 20 RPM and running on road with 1km/h speed. The mixing ratio of cement: sand:gravel, water to cement ratio, super plasticizer were, 1:1.73:2.47, 0.40 and 6% of cement, respectively. The chemical composition of raw material was determined using XRF and the properties of cements were measured according to ASTM standards. The experimental results confirm that the cement with composition of 6.89% of GBFS, 4% of Gypsum and 89.11% of clinker showed the good compressive strength and workability of concrete after 150 minutes of the spinning motion in bulk carrier.

석분을 혼입한 무세골재 콘크리트의 강도 개선에 관한 연구 (A Study on the Improvement of Strength in No-Fines Concrete with Stone Dust)

  • 나성훈;조재병;임정순
    • 콘크리트학회지
    • /
    • 제7권3호
    • /
    • pp.149-155
    • /
    • 1995
  • 무세골재 콘크리트에 석분을 혼입하므로써 얻을 수 있는 강도 증가효과를 조사하기 위하여 실험을 통한 연구를 수행하였다. 시멘트-골재의 비 1 : 6, 1 : 8 그리고 1 : 10 과 30~56% 사이의 여러 물 -시멘트 비를 배합설계시에 선정하였다. 작업하기 적당한 콘크리트를 얻기 위하여 필요에 따라 고유동화제를 시멘트중량의 1.5%사용하였으며, 석분을 혼입한무세골재 콘크리트의 경우 시멘트와 같은 중량의 석분을 혼입하였다. 여러 배합설계에 대한 압축강도와 인장강도 시험 결과를 비교분석하였다. 시험결과는 무세골재 콘크리트에 비하여 압축강도는 약 38%, 인장강도는 약 17%~72% 증가시킬 수 있음을 보여주고 있다.