• Title/Summary/Keyword: Super Hydrophobic

Search Result 74, Processing Time 0.02 seconds

Epidermal Features of the Nelumbo nucifera Tissues and Lotus Effect (연꽃식물 조직의 표피 특성과 연잎효과)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.42 no.2
    • /
    • pp.95-103
    • /
    • 2012
  • The cell surface sculpture of the plant epidermis has received great interest recently. It has also been an active area of research, as the biological microstructures of the surface, such as papillae and waxes, exhibit several unique properties, including self-cleaning character; namely the "Lotus effect" first described in the leaves of the lotus, Nelumbo nucifera. The Lotus effect is the phenomenon in which the super-hydrophobic and water-repellent nature of lotus leaves allow water drops to run off easily on the surface in a rolling and sliding motion thereby facilitating the removal of dirt particles. It is well-known that surface roughness on the micro- and nanoscale is a primary characteristic allowing for the Lotus effect. This effect is common among plants and is of great technological importance, since it can be applied industrially in numerous fields. In the present study, Nelumbo nucifera leaf and stem epidermal surfaces have been examined with a focus on the features of papillae and wax crystalloids. Both young and mature Nelumbo nucifera leaf epidermis demonstrated the Lotus effect on their entire epidermal surface. The central area of the upper epidermis, in particular, formed extremely papillose surfaces, with an additional wax layer, enabling greater water repellency. Despite the presence of wax crystalloids, epidermal surfaces of the lower leaf and stem lacking papillae, were much more easily wetted.

Interfacial Properties of Gradient Specimen of CNT-Epoxy Nanocomposites using Micromechanical Technique and Wettability (미세역학적 실험법과 젖음성을 이용한 CNT-에폭시 나노복합재료 경사형 시편의 계면특성)

  • Wang, Zuo-Jia;GnidaKouong, Joel;Park, Joung-Man;Lee, Woo-Il;Park, Jong-Gyu
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.8-14
    • /
    • 2009
  • Interfacial evaluation of glass fiber reinforced carbon nanotube (CNT)-epoxy nanocomposite was investigated by micromechanical technique in combination with wettability test. The contact resistance of the CNT-epoxy nanocomposite was measured using a gradient specimen, containing electrical contacts with gradually-increasing spacing. The contact resistance of CNT-epoxy nanocomposites was evaluated by using the two-point method rather than the four-point method. Due to the presence of hydrophobic domains on the heterogeneous surface, the static contact angle of CNT-epoxy nanocomposite was about $120^{\circ}$, which was rather lower than that for super-hydrophobicity. For surface treated-glass fibers, the tensile strength decreased dramatically, whereas the tensile modulus exhibited little change despite the presence of flaws on the etched fiber surface. The interfacial shear strength (IFSS) between the etched glass fiber and the CNT-epoxy nanocomposites increased due to the enhanced surface energy and roughness. As the thermodynamic work of adhesion, $W_a$ increased, both the mechanical IFSS and the apparent modulus increased, which indicated the consistency with each other.

Characterization of Fluorocarbon Thin Films deposited by PECVD (PECVD로 증착된 불화 유기박막의 특성 평가)

  • 김준성;김태곤;박진구;신형재
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.2
    • /
    • pp.31-36
    • /
    • 2001
  • Teflon-like fluorocarbon thin film was deposited by using difluoromethane$(CH_2F_2$) added with Ar, $O_2$, and $CH_4$ on Si, $SiO_2$, TEOS, and Al substrate. The deposited thin film was characterized by static contact angles for measuring hydrophobicity in various additive gas ratio. temperature, and working pressure. In case of addition with Ar, the static contact angles decreased as additive gas ratio and power increased. But the static contact angles increased as working pressure increased. Specially, super-hydrophobic surface was obtained using the powder-like fluorocarbon thin film above 2 Torr. Added with $O_2$, the static contact angles decreased as the $O_2$ ratio and working pressure increased. And the static contact angles did not change in 100W, but hydrophilic surface was obtained at 200W. In case of addition of CE$_4$, static contact angles dramatically increased in $CH_4/CH_2F_2$ ratio 5. And continuous static contact angles obtained above ratio 5. As compare with previous experiments by thermal evaporation, the fluorocarbon thin film by plasma polymerization was obtained very low hysteresis. This results shows more homogenous surface by plasma polymerization than thermal evaporation process.

  • PDF

Classification of Antimicrobial Peptides among the Innate Immune Modulators (선천성 면역조절자인 항생펩타이드 분류)

  • Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.25 no.7
    • /
    • pp.833-838
    • /
    • 2015
  • Multidrug-resistant super bacterial, fungal, viral, and parasitic infections are major health threaten pathogens. However, to overcome the present healthcare situation, among the leading alternatives to current drugs are antimicrobial peptides (AMPs), which are abundantly produced via various species in nature. AMPs, small host defense proteins, are in charge of the innate immunity for the protection of multicellular organisms such as fish, amphibian, reptile, plants and animals from infection. The number of AMPs identified per year has increased steadily since the 1980s. Over 2,000 natural AMPs from bacteria, protozoa, fungi, plants, and animals have been listed into the antimicrobial peptide database (APD). The majority of these AMPs (>86%) possess 11–50 amino acids with a net charge from 0 to +7 and hydrophobic percentages between 31–70%. This report classified AMP into several categories including biological source, biological functions, peptide properties, covalent bonding pattern, and 3D structure. AMP functions not only antimicrobial activity but facilitates cell biological activity such as chemotatic activity. In addition, fibroblastic reticular cell (FRC) originated from mouse lymph node stroma induced the expression of AMP in inflammatory condition. AMP induced from FRC contained whey acidic protein (WAP) domain. It suggests that the classification of AMP will be done by protein domain.