DOI QR코드

DOI QR Code

Epidermal Features of the Nelumbo nucifera Tissues and Lotus Effect

연꽃식물 조직의 표피 특성과 연잎효과

  • Kim, In-Sun (Biology Department, College of Natural Sciences, Keimyung University)
  • 김인선 (계명대학교 자연과학대학 생물학과)
  • Received : 2012.06.12
  • Accepted : 2012.06.26
  • Published : 2012.06.30

Abstract

The cell surface sculpture of the plant epidermis has received great interest recently. It has also been an active area of research, as the biological microstructures of the surface, such as papillae and waxes, exhibit several unique properties, including self-cleaning character; namely the "Lotus effect" first described in the leaves of the lotus, Nelumbo nucifera. The Lotus effect is the phenomenon in which the super-hydrophobic and water-repellent nature of lotus leaves allow water drops to run off easily on the surface in a rolling and sliding motion thereby facilitating the removal of dirt particles. It is well-known that surface roughness on the micro- and nanoscale is a primary characteristic allowing for the Lotus effect. This effect is common among plants and is of great technological importance, since it can be applied industrially in numerous fields. In the present study, Nelumbo nucifera leaf and stem epidermal surfaces have been examined with a focus on the features of papillae and wax crystalloids. Both young and mature Nelumbo nucifera leaf epidermis demonstrated the Lotus effect on their entire epidermal surface. The central area of the upper epidermis, in particular, formed extremely papillose surfaces, with an additional wax layer, enabling greater water repellency. Despite the presence of wax crystalloids, epidermal surfaces of the lower leaf and stem lacking papillae, were much more easily wetted.

연잎효과는 연꽃의 잎에서 규명된 현상으로 표피세포에서 기원하는 미세구조에 의해 물방울이 잎 표면이나 내부조직에 침투하지 않고 경사면으로 흘러내리며 표면 위 먼지나 이물질을 함께 떨어지게 한다. 잎 표면을 항상 깨끗한 상태로 유지하는 자기정화 능력인 연잎효과에 대해서는 여러 영역에서 연구되고 다방면으로 응용되고 있으나 구조적인 측면에서 연잎을 생장단계별 또는 표피조직 부위별로 비교 조사한 연구는 거의 없는 실정이다. 이에 본 연구에서는 연잎과 줄기를 대상으로 생장단계별, 부위별 표피조직의 미세 표면구조를 연구하여 연잎효과 표면 특성을 조사하였다. 본 연구에서 조사된 연잎효과는 미세돌기와 왁스결정체가 발달한 잎의 상피조직에서만 나타나고, 왁스결정체만 발달한 하피 및 줄기의 표피조직에서는 확인되지 않았다. 이는 미세돌기의 발달이 연잎효과를 나타내는데 가장 중요한 요인이고, 왁스결정체가 돌기표면 위에 축적되면 연잎효과는 더 증가하는 것으로 밝혀졌다.

Keywords

References

  1. Barthlott W, Neinhuis C: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202 : 1-8, 1997. https://doi.org/10.1007/s004250050096
  2. Bhushan B: Bioinspired structured surfaces. Langmuir 28 : 1698-1714, 2012. https://doi.org/10.1021/la2043729
  3. Bhushan B, Her EK: Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal. Langmuir 26 : 8207-8217, 2010. https://doi.org/10.1021/la904585j
  4. Burton Z, Bhushan B: Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces. Ultramicroscopy 106 : 709-719, 2006. https://doi.org/10.1016/j.ultramic.2005.10.007
  5. Cha T, Yi JW, Lee K, Moon M, Kim H: Super water repellent surface "strictly" mimicking the surface structure of lotus leaf. Kor Soc Mech Engin Spring conference Proc. KSME 09MNO28 : 270-271, 2009.
  6. Cha T, Yi JW, Moon M, Lee KR, Kim H: Nanoscale patterning of microtextured surfaces to control superhydrophobic robustness. Langmuir 26 : 8319-8326, 2010. https://doi.org/10.1021/la9047402
  7. Dawood MK, Zheng H, Liew TH: Mimicking both petal and Lotus effects on a single silicon substrate by tuning ther wettability of nanostructured surfaces. Langmuir 27 : 4126-4133, 2011. https://doi.org/10.1021/la1050783
  8. Ensikat HJ, Barthlott W: Liquid substitution: a versatile procedure for SEM specimen preparation of biological materials without drying or coating. J Microsc 172 : 195-203, 1993. https://doi.org/10.1111/j.1365-2818.1993.tb03413.x
  9. Feng J, Wang F, Zhao Y: Electrowetting on a lotus leaf. Biomicrofluidics 3, 022406 : 1-10, 2009.
  10. Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F, Jiang L: Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24 : 4114-4119, 2008. https://doi.org/10.1021/la703821h
  11. Feng L, Zhang Y, Li M, Zheng Y, Shen W, Jiang L: The structural color of red rose petals and their duplicates. Langmuir 26 : 14885- 14888, 2010. https://doi.org/10.1021/la102406u
  12. Forbes P: Self cleaning materials: Lotus leaf-inspired nanotechnology. Sci Amer Mag 5 : 148-151, 2008.
  13. Furstner R, Barthlott W, Neinhuis C, Wazel P: Wetting and selfcleaning properties of artificial superhydrophobic surfaces. Langmuir 21 : 956-961, 2005. https://doi.org/10.1021/la0401011
  14. Gao L, McCarthy TJ: Teflon is hydrophilic. Comments on definitios of hydrophobic, shear versus tensile hydrophobicity, and wettability characterization. Langmuir 24 : 9183-9188, 2008. https://doi.org/10.1021/la8014578
  15. Guo Z, Liu W: Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure. Pl Sci 172 : 1103-1112, 2007. https://doi.org/10.1016/j.plantsci.2007.03.005
  16. Gould P: Smart, clean surfaces. Materialstoday November : 44-48, 2003.
  17. Graham LE, Graham JM, Wilcox LW: Plant Biology. 2nd ed. Pearson Prentice Hall, Upper Saddle River. pp. 190-206, 2006.
  18. Kang C, Keum D, Kim G, Seo S: An Interesting Journey to the Nano Science and Technology. Yangmoon, Seoul, pp. 57-64, 2006.
  19. Karthick B, Maheshwari R: Lotus-inspired nanotechnology applications. Resonance 13 : 1141-1145, 2008. https://doi.org/10.1007/s12045-008-0113-y
  20. Koch K, Barthlott W: Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Phil Trans R Soc A 367 : 1487-1509, 2009. https://doi.org/10.1098/rsta.2009.0022
  21. Koch K, Bohn HF, Barthlott W: Hierarchically sculptured plant surfaces and superhydrophobicity. Langmuir 25 : 14116-14120, 2009. https://doi.org/10.1021/la9017322
  22. Lee KB: Plant Anatomy. Life Science Co. pp. 77-86, 2004.
  23. Marmur A: The lotus effect: superhydrophobicity and matastability. Langmuir 20 : 3517-3519, 2004. https://doi.org/10.1021/la036369u
  24. Muller F, Michel W, Schlicht V, Tietze A, Winter P: Self cleaning surfaces using the Lotus effect. Elsevier. pp. 791-811, 2007.
  25. Neinhuis C, Barthlott W: Characterization and distribution of waterrepellent, self-cleaning plant surfaces. Ann Bot 79 : 667-677, 1997. https://doi.org/10.1006/anbo.1997.0400
  26. Nun E, Oles M, Schleich B: Lotus effect surfaces. Macromol Symp 187 : 677-682, 2002. https://doi.org/10.1002/1521-3900(200209)187:1<677::AID-MASY677>3.0.CO;2-I
  27. Otten A, Herminghaus S: How plants keep dry: a physicist's point of view. Langmuir 20 : 2405-2408, 2004. https://doi.org/10.1021/la034961d
  28. Peacock J, Rensburg L, Kruger H, Merwe CF: Liquid substitution: an alternative procedure for leaf surface studies with scanning electron microscopy. Scan Microsc 12 : 401-412, 1998.
  29. Shafiei M, Alpas AT: Nanocrystalline nickel films with lotus leaf texture for superhydrophobic and low friction surfaces. Appl Surf Sci 256 : 710-719, 2009. https://doi.org/10.1016/j.apsusc.2009.08.047
  30. Shen P, Uesawa N, Inasawa S, Yamaguchi Y: Characterization of flowerlike particles obtained from chemical etching: visible fluorescence and superhydrophobicity. Langmuir 26 : 13522- 13527, 2010. https://doi.org/10.1021/la102516g
  31. Spori DM, Drobek T, Zurcher S, Ochsner M, Sprecher C, Muhlebach A, Spencer ND: Beyond the lotus effect: roughness influences on wetting over a wide surface-energy range. Langmuir 24 : 5411-5417, 2008. https://doi.org/10.1021/la800215r
  32. Wagner P, Furstner R, Barthlott W, Neinhuis C: Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. J Expt Bot 54 : 1295-1303, 2003. https://doi.org/10.1093/jxb/erg127
  33. Xia F, Jiang L: Bio-inspired, smart, multiscale interfacial materials. Adv Mater 20 : 2842-2858, 2008. https://doi.org/10.1002/adma.200800836