• Title/Summary/Keyword: Sun spray

Search Result 261, Processing Time 0.027 seconds

Comparative Study of Spray Drying Method and Solvent Evaporation Method for Preparation of Biodegradable Microspheres Containing Nicotine and Triamcinolone Acetonide (니코틴과 트리암시놀론 아세토니드를 함유하는 생분해성 마이크로스피어의 제조시 분무건조법과 용매증발법의 비교)

  • Park, Sun-Young;Cho, Mi-Hyun;Lee, Jeong-Hwa;Kim, Dong-Woo;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.4
    • /
    • pp.257-263
    • /
    • 2001
  • The microspheres have been developed as a new drug delivery system. Although many particulate drug carriers, such as liposome, niosome and emulsion, have been introduced, injectable and biodegradable microspheres appears to be a particularly ideal delivery system because the local anesthesia is not necessary for the insertion of large implants and for the removal of the device after the drug release is finished. Biodegradable microspheres with nicotine and triamcinolone acetonide are prepared and evaluated. As biodegradible polymers, PLA (M.W. 15,000, PLA-0015), PLGA (M.W. 17,000, RG 502) and PLGA (M.W. 8,600, RG 502H) are used. This study attempted to prepare and evaluate the nicotine and triamcinolone acetonide-incorporated microspheres, which were prepared by two methods, solvent-evaporation and spray-drying methods. The microspheres, as a disperse system for injections, were evaluated by particle size, size distribution, entrapment efficiency, and in vitro drug release patterns. The differences of preparation method, partition coefficient, types of polymer, and preparation conditions of microspheres influence the particle size, entrapment efficiency, and in vitro drug release patterns.

  • PDF

Design and Spray Characteristics of Coaxial injector using GCH4/LOx (가스메탄/액체산소를 추진제로 이용한 동축인젝터 설계 및 분무 특성)

  • Kim, Bo-Yeon;Lee, Yank-Suk;Park, Jin-Ho;Ko, Young-Sung;Kim, Sun-Jin;Kim, Yoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.577-580
    • /
    • 2010
  • Coaxial injectors using GCH4/LOx as propellants was designed with shear(gas)/shear(liquid) type and shear(gas)/swirl(liquid) type. Spray characteristics were investigated by cold flow test. Spray patterns of the shear/shear and the shear/swirl type injectors were like a spout of water and hollow cone, respectively. Atomization efficiency of the shear/swirl type injector was better than atomization efficiency of the shear/shear type injector.

  • PDF

Spray Characteristics of a Liquid-fueled Ramjet Engine under High Pressure Air-stream Conditions

  • Lee, Choong-Won;Youn, Hyun-Jin;Lee, Tae-Hee;Lee, Geun-sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.749-752
    • /
    • 2004
  • In a liquid-fueled ramjet engine, the insufficient mixing and evaporation result in the low combustion efficiency and combustion instability. Improving its spray characteristics and devising a means of mixing fuel droplets with air may compensate these disadvantages of liquid fuel ramjet engine. The jet penetrations of various fuel injectors were measured to investigate the spray characteristics of a liquid-fueled ramjet engine under high pressure air-stream conditions. The penetrations in high pressure conditions are smaller than the values calculated from Inamura's or Lee's equations, and, in the high pressure conditions, the jet penetrations are similar each other. In the dual hole injectors, the jet penetrations of rear orifice is rapidly increased due to the reduction of the drag, which is created by the jet column of front orifice. The jet penetration of rear orifice is increased because of the drag reduction created by the jet column of the front orifice. And, because of the drag reduction formed by the column of jet, the jet penetration in the rear orifice of dual hole injector is much larger than the jet penetration of single hole injector. As the distances of the orifice are increased, the jet penetrations of the rear orifice decrease.

  • PDF

Characterization of a Chalcosyltransferase (gerGTII) in Dihydrochalcomycin Biosynthesis

  • Pageni, Binod Babu;Oh, Tae-Jin;Thuy, Ta Thi Thu;Sohng, Jae Kyung
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.278-284
    • /
    • 2008
  • An open reading frame, designated GerGTII and located downstream of the polyketide synthase genes, has been identified as a chalcosyltransferase by sequence analysis in the dihydrochalcomycin biosynthetic gene cluster of Streptomyces sp. KCTC 0041BP. The deduced product of gerGTII is similar to several glycosyltransferases, authentic and putative, and it displays a consensus sequence motif that appears to be characteristic of a sub-group of these enzymes. Specific disruption of gerGTII within the S. sp. KCTC 0041BP genome by insertional in-frame deletion method, resulted complete abolishment of dihydrochalcomycin and got the 20-O-mycinosyl-dihydrochalconolide as intermediate product in dihydrochalcomycin biosynthesis which was confirmed by electron spray ionization-mass spectrometry and liquid chromatography-mass spectrometry. Dihydrochalcomycin also was recovered after complementation of gerGTII.

Analysis of Image and Development of UV Corona Camera for High-Voltage Discharge Detection (고전압 방전 검출용 자외선 코로나 카메라 개발 및 방전 이미지 분석)

  • Kim, Young-Seok;Shong, Kil-Mok;Bang, Sun-Bae;Kim, Chong-Min;Choi, Myeong-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.9
    • /
    • pp.69-74
    • /
    • 2011
  • In this paper, the UV corona camera was developed using the solar blind and Multi Channel Plate(MCP) technology for the target localization of UV image. UV camera developed a $6.4[^{\circ}]{\times}4.8[^{\circ}]$ of the field of view as a conventional camera to diagnose a wide range of slightly enlarged, and power equipment to measure the distance between the camera and the distance meter has been attached. UV camera to measure the discharge count and the UV image was developed, compared with a commercial camera, there was no significant difference. In salt spray environments breakdown voltage was lower than the normal state, thereby discharging the image was rapidly growing phenomenon.

Fabrication of Carbon Nanotube Strain Sensors (카본나노튜브 스트레인 센서 제작 기술)

  • Chang, Won-Seok;Song, Sun-Ah;Kim, Jae-Hyun;Han, Chang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.773-777
    • /
    • 2009
  • In this study, the strain sensing characteristics of single-wall carbon nanotubes(SWCNTs) networks were investigated to develop a film sensor for strain sensing. The SWCNTs film are formed on flexible substrates of poly(ethylene terephthalate) (PET) using spray process. In this manner we could control the transparency and obtain excellent uniformity of the networked SWCNT film. The carbon nanotube film is isotropic due to randomly oriented bundles of SWCNTs. Using experimental results it is shown that there is a nearly linear change in resistance across the film when it is subjected to tensile stress. The results presented in this study indicate the potential of such films for high sensitive transparent strain sensors on macro scale.

The Effects of Water Spray on the NOx Formation of a Counterflow Flame (물분사가 대향류 화염의 NOx 생성에 미치는 영향)

  • Jung, Sun-Wook;Min, Byoung-Hyouk;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.8-16
    • /
    • 2001
  • Various technologies for the reduction of atmospheric pollution have been developed. One of which is to inject fine-water droplets directly on the flame. This way decreases the formation of thermal NOx due to the temperature drop during evaporation of droplets. There is another effect of reducing prompt NOx, which is resulted from delay of response time and the flow of droplets. In this experiment, it has been investigated the effects of changes of water droplets size and flow rate on temperature and formations of NOx at the counterflow diffusion flame.

  • PDF

A Study on Ice Slurry Production by Water Spray

  • Kim, Byeong-Sun;Lee, Yoon-Pyo;Yoon, Seong-Young;Lee, Jin-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.45-55
    • /
    • 1998
  • A theoretical and experimental study is performed to investigate the characteristics of ice slurry product. By diffusion-controlled evaporation model the possibility of ice slurry is theoretically anticipated. The water vapor evaporated from the surface of droplets is extracted continuously from the chamber by a vacuum pump. The droplet diameter is measured by silicon immersion method. The ice slurry is obtained by spraying droplets of ethylene glycol aqueous solution in the chamber where pressure is maintained under the triple point of water. The droplet with the diameter of 300 $\mu\textrm{m}$and the initial temperature of 2$0^{\circ}C$ was changed into ice particle within the chamber of 1.33m in height.

  • PDF

Study on Urea Spray Visualization in SCR System (SCR장치에서 우레아 분무가시화 실험에 관한 연구)

  • Baik, Doo-Sung;Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.611-614
    • /
    • 2008
  • Urea-SCR system has been known so far as one of effective after treatments for the reduction of NOx. In order to achieve better performance in SCR system, optimal geometric conditions for a urea injection system should be achieved. This research focused to visualize spray characteristics of urea injected SCR system in a heavy duty diesel engine. The experiment was conducted by varying injection pressures and flow rates of urea. The flow visualization was made by photographing techniques of CCD camera.

Electrical characteristics of multi-walled carbon nanotube-polyethylene composites by catalyst and gas control

  • Park, Suyoung;Choi, Sun-Woo;Jin, Changhyun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.5
    • /
    • pp.464-469
    • /
    • 2019
  • In this study, the electrical conductivity of multi-walled carbon nanotubes (MWCNTs) and polyethylene synthesized by an extrusion process was evaluated. The MWCNTs used exhibited differences in their dispersion characteristics depending on the type of catalyst or synthesis gas used. Thus, the choice of catalyst or synthesis gas significantly affect the physicochemical state of the final MWCNTs and MWCNT-based composites. In this investigation, the characteristics of MWCNTs were analyzed in four cases by introducing ethylene and propylene gas to each catalyst synthesized using deposition precipitation and spray drying methods. The MWCNT-based composites synthesized using the catalyst prepared by deposition precipitation and the ethylene synthesis gas showed the best electrical conductivity. In principle, the morphologies of the MWCNTs indicate that the smaller the aggregate size and bundle thickness, the better the electrical conductivity of the MWCNT composites. This implies that the network is well-formed.