Characterization of a Chalcosyltransferase (gerGTII) in Dihydrochalcomycin Biosynthesis

  • Pageni, Binod Babu (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University) ;
  • Oh, Tae-Jin (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University) ;
  • Thuy, Ta Thi Thu (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University) ;
  • Sohng, Jae Kyung (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University)
  • Received : 2008.03.04
  • Accepted : 2008.06.23
  • Published : 2008.09.30

Abstract

An open reading frame, designated GerGTII and located downstream of the polyketide synthase genes, has been identified as a chalcosyltransferase by sequence analysis in the dihydrochalcomycin biosynthetic gene cluster of Streptomyces sp. KCTC 0041BP. The deduced product of gerGTII is similar to several glycosyltransferases, authentic and putative, and it displays a consensus sequence motif that appears to be characteristic of a sub-group of these enzymes. Specific disruption of gerGTII within the S. sp. KCTC 0041BP genome by insertional in-frame deletion method, resulted complete abolishment of dihydrochalcomycin and got the 20-O-mycinosyl-dihydrochalconolide as intermediate product in dihydrochalcomycin biosynthesis which was confirmed by electron spray ionization-mass spectrometry and liquid chromatography-mass spectrometry. Dihydrochalcomycin also was recovered after complementation of gerGTII.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology

References

  1. Aguirrezabalaga, I., Olano, C., Allende, N., Rodriguez, L., Brana, A.F., Méndez, C., and Salas, J.A. (2000). Identification and expression of genes involved in biosynthesis of L-oleandrose and its intermediate L-olivose in the oleandomycin producer Streptomyces antibioticus. Antimicrob. Agents Chemother. 44, 1266-1275 https://doi.org/10.1128/AAC.44.5.1266-1275.2000
  2. Arakawa, K., Kodama, K., Tatsuno, S., Ide, S., and Kinashi, H. (2006). Analysis of the loading and hydroxylation steps in lankamycin biosynthesis in Streptomyces rochei. Antimicrob. Agents Chemother. 50, 1946-1952 https://doi.org/10.1128/AAC.00016-06
  3. Asolkar, R.N., Maskey, R.P., Helmke, E., and Laatsh, H. (2002). Chalcomycin B, anew macrolide antibiotic from the marine isolate Streptomyces sp. B7064. J. Antibiot. 55, 893-898 https://doi.org/10.7164/antibiotics.55.893
  4. Basnet, D.B., Oh, T.J., Vu, T.T., Sthapit, B., Liou, K., Lee, H.C., Yoo, J.C., and Sohng, J.K. (2006). Angucyclines Sch 47554 and Sch 47555 from Streptomyces sp. SCC-2136: cloning, sequencing, and characterization. Mol. Cells 22, 154-162
  5. Bierman, M., Logan, R., O'Brien, K., Seno, E.T., Rao, R.N., and Schoner, B.E. (1992). Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116, 43-49 https://doi.org/10.1016/0378-1119(92)90627-2
  6. Denis, F., and Brzezinski, R. (1991). An improved aminoglycoside resistance gene cassette for use in gram-negative bacteria and Streptomyces. FEMS Microbiol. Lett. 65, 261-264
  7. Durr, C., Hoffmeister, D., Wohlert, S.E., Ichinose, K., Weber, M., Von Mulert, U., Thorson, J.S., and Bechthold, A. (2004). The glycosyltransferase UrdGT2 catalyzes both C- and O-glycosidic sugar transfers. Angew. Chem. Int. Ed. Engl. 43, 2962-2965 https://doi.org/10.1002/anie.200453758
  8. Fouces, R., Mellado, E., Diez, B., and Barredo, J.L. (1999). The tylosin biosynthetic cluster from Streptomyces fradiae: genetic organization of the left region. Microbiology 145, 855-868 https://doi.org/10.1099/13500872-145-4-855
  9. Goo, Y.M., Lee, Y.Y., and Kim, B.T. (1997). A new 16-membered chalcomycin type macrolide antibiotic, 250-144C. J. Antibiot. 50, 85-88 https://doi.org/10.7164/antibiotics.50.85
  10. Jaishy, B.P., Lim, S.K., Yoo, I.D., Yoo, J.C., Sohng, J.K., and Nam, D.H. (2006). Cloning and characterization of a gene cluster for the production of polyketide macrolide dihydrochalcomycin in Streptomyces sp. KCTC0041BP. J. Microbiol. Biotechnol. 16, 764-770
  11. Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. (2000). Practical Streptomyces Genetics. The John Innes Centre Foundation, Norwich
  12. Kim, S.D., Ryoo, I.J., Kim, C.J., Kim, W.G., Kim, J.P., Kong, J.Y., Koshino, H., Uramoto, M., and Yoo, I.D. (1996). GERI-155 a new macrolide antibiotic related to chalcomycin. J. Antibiot. 49, 955-957 https://doi.org/10.7164/antibiotics.49.955
  13. Kinoshita, K., Takenaka, S., Suzuki, H., Morohoshi, T., and Hayashi, M. (1992). Mycinamicins, new macrolide antibiotics. XIII. Isolation and structures of novel fermentation products from Micromonospora griseorubida (FERM BP-705). J. Antibiot. 45, 1-9 https://doi.org/10.7164/antibiotics.45.1
  14. Lombo, F., Gibson, M., Greenwell, L., Brana, A.F., Rohr, J., Salas, J.A., and Mendez, C. (2004). Engineering biosynthetic pathways for deoxysugars: Branched-chain sugar pathways and derivatives from the antitumor tetracenomycin. Chem. Biol. 11, 1709-1718 https://doi.org/10.1016/j.chembiol.2004.10.007
  15. MacNeil, D.J., Gewain, K.M., Ruby, C.L., Dezeny, G., Gibbons, P.H., and MacNeil, T. (1992). Analysis of Streptomyces avrmitiis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111, 61-68 https://doi.org/10.1016/0378-1119(92)90603-M
  16. Maki, M., and Renkonen, R. (2004). Biosynthesis of 6-deoxyhexose glycans in bacterial. Glycobiology 14, 1-15 https://doi.org/10.1093/glycob/cwh054
  17. Mochizuki, S., Hiratsu, K., Suwa, M., Ishii, T., Suqino, F., Yamada, K., and Kinashi, H. (2003). The large linear plasmid pSLA2-L of Streptomyces rochei has an unusually condensed gene organization for secondary metabolism. Mol. Microbiol. 48, 1501-1510 https://doi.org/10.1046/j.1365-2958.2003.03523.x
  18. Ochsner, U.A., Fiechter, A., and Reiser, J. (1994). Isolation, characterization and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid bio-surfactant synthesis. J. Biol. Chem. 269, 19787-19795
  19. Quiros, L.M., and Salas, J.A. (1995). Biosynthesis of the macrolide oleandomycin by Streptomyces antibioticus. J. Biol. Chem. 270, 18234-18239 https://doi.org/10.1074/jbc.270.31.18234
  20. Quiros, L.M., Carbajo, J.R., and Salas, J.A. (2000). Inversion of the anomeric configuration of the transferred sugar during inactivation of the macrolide antibiotic oleandomycin catalyzed by a macrolide glycosyltransferase. FEBS Lett. 476, 186-189 https://doi.org/10.1016/S0014-5793(00)01721-X
  21. Salah-Bey, K., Doumith, M., Michel, J.M., Haydock, S., Cortés, J., Leadlay, P.F., and Raynal, M.C. (1998). Targeted gene inactivation for the elucidation of deoxysugar biosynthesis in the erythromycin producer Saccharopolyspora erythraea. Mol. Gen. Genet. 257, 542-553 https://doi.org/10.1007/s004380050680
  22. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular cloning. A Laboratory Manual, 2nd ed. (NY, USA: Cold Spring Harbor, Cold Spring Harbor Laboratory)
  23. Solenberg, P.J., Matsushima, P., Stack, D.R., Wilkie, S.C., Thompson, R.C., and Baltz, R.H. (1997). Production of hybrid glycopeptide antibiotics in vitro and in Streptomyces toyocaensis. Chem. Biol. 4, 195-202 https://doi.org/10.1016/S1074-5521(97)90288-X
  24. Tang, L., and McDaiel, R. (2001). Construction of desosamine containing polyketide libraries using a glycosyltransferase with broad substrate specificity. Chem. Biol. 8, 547-555 https://doi.org/10.1016/S1074-5521(01)00032-1
  25. Unligil, U.M., and Rini, J.M. (2000). Glycosyltransferase structure and mechanism. Curr. Opin. Struct. Biol. 10, 510-517 https://doi.org/10.1016/S0959-440X(00)00124-X
  26. Ward, S.L., Hu, Z., Schirmer, A., Reid, R., Revill, W.P., Reeves, C.D., Petrakovsky, O.V., Dong, S.D., and Katz, L. (2004). Chalcomycin biosynthesis gene cluster from Streptomyces bikinensis. Novel feature of unusual ketolide produce through expression Streptomyces fradiae. Antimicrob. Agents Chemother. 48, 4703-4712 https://doi.org/10.1128/AAC.48.12.4703-4712.2004
  27. Wilson, V.T.W., and Cundliffe, E. (1998). Characterization and targeted disruption of a glycosyltransferase gene in the tylosin producer, Streptomyces fradiae. Gene 214, 95-100 https://doi.org/10.1016/S0378-1119(98)00210-8
  28. Woo, P.W.K., and Rubin, J.R. (1996). Chalcomycin: single-crystal X-ray crystallographic analysis; biosynthetic and stereochemical correlations with polyoxo macrolide antibiotics. Tetrahedron 52, 3857-3872 https://doi.org/10.1016/S0040-4020(96)00052-X
  29. Xue, Y., and Sherman, D.H. (2001). Biosynthesis and combinatorial biosynthesis of pikromycin-related macrolides in Streptomyces venezuelae. Metab. Eng. 3, 15-26 https://doi.org/10.1006/mben.2000.0167