DOI QR코드

DOI QR Code

Electrical characteristics of multi-walled carbon nanotube-polyethylene composites by catalyst and gas control

  • Park, Suyoung (Department of Aviation Maintenance Engineering, Far East University) ;
  • Choi, Sun-Woo (Department of Materials and Metallurgical Engineering, Kangwon National University) ;
  • Jin, Changhyun (Division of Materials Science and Engineering, Hanyang University)
  • Received : 2019.05.01
  • Accepted : 2019.07.12
  • Published : 2019.10.01

Abstract

In this study, the electrical conductivity of multi-walled carbon nanotubes (MWCNTs) and polyethylene synthesized by an extrusion process was evaluated. The MWCNTs used exhibited differences in their dispersion characteristics depending on the type of catalyst or synthesis gas used. Thus, the choice of catalyst or synthesis gas significantly affect the physicochemical state of the final MWCNTs and MWCNT-based composites. In this investigation, the characteristics of MWCNTs were analyzed in four cases by introducing ethylene and propylene gas to each catalyst synthesized using deposition precipitation and spray drying methods. The MWCNT-based composites synthesized using the catalyst prepared by deposition precipitation and the ethylene synthesis gas showed the best electrical conductivity. In principle, the morphologies of the MWCNTs indicate that the smaller the aggregate size and bundle thickness, the better the electrical conductivity of the MWCNT composites. This implies that the network is well-formed.

Keywords

References

  1. S. Ijima, Nature 354 (1991) 56-58. https://doi.org/10.1038/354056a0
  2. A. Samakande, P.C. Hartmann, V. Cloete, and R.D. Sanderson, Polymer 48 (2007) 1490-1499. https://doi.org/10.1016/j.polymer.2006.07.072
  3. R. J. Chen, Y. Zhang, D. Wang, and H. Dai, J. Am. Chem. Soc. 123 (2001) 3838-3839. https://doi.org/10.1021/ja010172b
  4. M. Castro, B. Kumar, J.F. Feller, Z. Haddi, A. Amari, and B. Bouchikhi, Sens. Actuators, B 159 (2011) 213-219. https://doi.org/10.1016/j.snb.2011.06.073
  5. C. Robert, J.F. Feller, and M. Castro, ACS Appl. Mater. Interfaces 4 (2012) 3508-3516. https://doi.org/10.1021/am300594t
  6. W. Bauhofer, and J.Z. Kovacs, Compos. Sci. Technol. 69 (2009) 1486-1498. https://doi.org/10.1016/j.compscitech.2008.06.018
  7. X. He, F. Zhang, R. Wang, and W. Liu, Carbon 45 (2007) 2559-2563. https://doi.org/10.1016/j.carbon.2007.08.018
  8. T. Saito, K. Matsushige, and K. Tanaka, Phys. B 323 (2002) 280-283. https://doi.org/10.1016/S0921-4526(02)00999-7
  9. J.P. Lu, J. Phys. Chem. Solids 58 (1997) 1649-1652. https://doi.org/10.1016/S0022-3697(97)00045-0
  10. V. Puchy, P. Hvizdos, J. Dusza, F. Kovac, F. Inam, and M.J. Reece, Ceram. Int. 39 (2013) 5821-5826. https://doi.org/10.1016/j.ceramint.2012.12.100
  11. J.A. Kim, D. G. Seong, T.J. Kang, and J.R. Youn, Carbon 44 (2006) 1898-1905. https://doi.org/10.1016/j.carbon.2006.02.026
  12. P. Potschke, M. Abdel-Goad, I, Alig, S. Dudkim, and D. Lellinger, Polymer 45 (2004) 8863-8870. https://doi.org/10.1016/j.polymer.2004.10.040
  13. Y.K. Lee, S.H. Jang, M.S. Kim, H.G. Yoon, S.D. Park, S.T. Kim, and J.D. Lee, Macromol. Res. 18 (2010) 241-246. https://doi.org/10.1007/s13233-010-0309-3
  14. K. Liao, and S. Li, Appl. Phys. Lett. 79 (2001) 4225-4227. https://doi.org/10.1063/1.1428116
  15. H. Tan, L.Y. Jiang, Y. Huang, B. Liu, and K.C. Hwang, Compos. Sci. Technol. 67 (2007) 2941-2946. https://doi.org/10.1016/j.compscitech.2007.05.016
  16. Y. Geng, M. Y. Liu, J. Li, X. M. Shi, and J.K. Kim, Compos. Part A 39 (2008) 1876-1883. https://doi.org/10.1016/j.compositesa.2008.09.009
  17. P.C. Ma, N. A. Siddiqui, G. Marom, and J.K. Kim, Compos. Part A 41 (2010) 1345-1367. https://doi.org/10.1016/j.compositesa.2010.07.003
  18. Y.S. Song, and J. R. Youn, Carbon 43 (2005) 1378-1385. https://doi.org/10.1016/j.carbon.2005.01.007
  19. F. Inam, A. Heaton, P. Brown, T. Peijs, and M. J. Reece, Ceram. Int. 40 (2014) 511-516. https://doi.org/10.1016/j.ceramint.2013.06.031
  20. G. Broza, Comp. Sci. Tech. 70 (2010) 1006-1010. https://doi.org/10.1016/j.compscitech.2010.02.021
  21. J.M. Garces, D.J. Moll, J. Bicerano, R. Fibiger, and D.G. McLeod, Adv. Mater. 12 (2000) 1835-1839. https://doi.org/10.1002/1521-4095(200012)12:23<1835::AID-ADMA1835>3.0.CO;2-T
  22. D. Singla, K. Amulya, and Q. Murtaza, Mater. Today 2 (2015) 2886-2895.
  23. F. Rezaei, R. Yunus, and N.A. Ibrahim, Mater. Des. 30 (2009) 260-263. https://doi.org/10.1016/j.matdes.2008.05.005
  24. S.S. Chougule, and S.K. Sahu, J. Nanotechnol. Eng. Med 5[1] (2014) 010901. https://doi.org/10.1115/1.4026971
  25. S.A. Gordeyev, J.A. Ferreira, C.A. Bernando and I.M. Ward, Mater. Lett. 51 (2001) 32-36. https://doi.org/10.1016/S0167-577X(01)00260-9
  26. D.S Jeong, and B.U. Nam, Polymer (Korea) 35 (2001) 17-22.
  27. M.T. Muller, B. Krause, B. Kretzschmar, and P. Potschke, Compos. Sci. Tech. 71 (2011) 1535-1542. https://doi.org/10.1016/j.compscitech.2011.06.003
  28. R. Perez-Bustamante, I. Estrada-Guel, P. Amezaga-Madrid, M. Miki-Yoshida, J.M. Herrera-Ramirez, and R. Martinez-Sanchez, J. Alloys Compd. 495[2] (2010) 399-402. https://doi.org/10.1016/j.jallcom.2009.10.099