• Title/Summary/Keyword: Summarization

검색결과 378건 처리시간 0.021초

주제어구 추출과 질의어 기반 요약을 이용한 문서 요약 (Document Summarization using Topic Phrase Extraction and Query-based Summarization)

  • 한광록;오삼권;임기욱
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권4호
    • /
    • pp.488-497
    • /
    • 2004
  • 본 논문에서는 추출 요약 방식과 질의어 기반의 요약 방식을 혼합한 문서 요약 방법에 관해서 기술한다. 학습문서를 이용해 주제어구 추출을 위한 학습 모델을 만든다. 학습 알고리즘은 Naive Bayesian, 결정트리, Supported Vector Machine을 이용한다. 구축된 모델을 이용하여 입력 문서로부터 주제어구 리스트를 자동으로 추출한다. 추출된 주제어구들을 질의어로 하여 이들의 국부적 유사도에 의한 기여도를 계산함으로써 요약문을 추출한다. 본 논문에서는 주제어구가 원문 요약에 미치는 영향과, 몇 개의 주제어구 추출이 문서 요약에 적당한지를 실험하였다. 추출된 요약문과 수동으로 추출한 요약문을 비교하여 결과를 평가하였으며, 객관적인 성능 평가를 위하여 MS-Word에 포함된 문서 요약 기능과 실험 결과를 비교하였다.

Summarization and Evaluation; Where are we today?!

  • Shamsfard, Mehrnoush;Saffarian, Amir;Ghodratnama, Samaneh
    • 한국언어정보학회:학술대회논문집
    • /
    • 한국언어정보학회 2007년도 정기학술대회
    • /
    • pp.422-429
    • /
    • 2007
  • The rapid growth of the online information services causes the problem of information explosion. Automatic text summarization techniques are essential for dealing with this problem. There are different approaches to text summarization and different systems have used one or a combination of them. Considering the wide variety of summarization techniques there should be an evaluation mechanism to assess the process of summarization. The evaluation of automatic summarization is important and challenging, since in general it is difficult to agree on an ideal summary of a text. Currently evaluating summaries is a laborious task that could not be done simply by human so automatic evaluation techniques are appearing to help this matter. In this paper, we will take a look at summarization approaches and examine summarizers' general architecture. The importance of evaluation methods is discussed and the need to find better automatic systems to evaluate summaries is studied.

  • PDF

A Survey on Automatic Twitter Event Summarization

  • Rudrapal, Dwijen;Das, Amitava;Bhattacharya, Baby
    • Journal of Information Processing Systems
    • /
    • 제14권1호
    • /
    • pp.79-100
    • /
    • 2018
  • Twitter is one of the most popular social platforms for online users to share trendy information and views on any event. Twitter reports an event faster than any other medium and contains enormous information and views regarding an event. Consequently, Twitter topic summarization is one of the most convenient ways to get instant gist of any event. However, the information shared on Twitter is often full of nonstandard abbreviations, acronyms, out of vocabulary (OOV) words and with grammatical mistakes which create challenges to find reliable and useful information related to any event. Undoubtedly, Twitter event summarization is a challenging task where traditional text summarization methods do not work well. In last decade, various research works introduced different approaches for automatic Twitter topic summarization. The main aim of this survey work is to make a broad overview of promising summarization approaches on a Twitter topic. We also focus on automatic evaluation of summarization techniques by surveying recent evaluation methodologies. At the end of the survey, we emphasize on both current and future research challenges in this domain through a level of depth analysis of the most recent summarization approaches.

Automatic Single Document Text Summarization Using Key Concepts in Documents

  • Sarkar, Kamal
    • Journal of Information Processing Systems
    • /
    • 제9권4호
    • /
    • pp.602-620
    • /
    • 2013
  • Many previous research studies on extractive text summarization consider a subset of words in a document as keywords and use a sentence ranking function that ranks sentences based on their similarities with the list of extracted keywords. But the use of key concepts in automatic text summarization task has received less attention in literature on summarization. The proposed work uses key concepts identified from a document for creating a summary of the document. We view single-word or multi-word keyphrases of a document as the important concepts that a document elaborates on. Our work is based on the hypothesis that an extract is an elaboration of the important concepts to some permissible extent and it is controlled by the given summary length restriction. In other words, our method of text summarization chooses a subset of sentences from a document that maximizes the important concepts in the final summary. To allow diverse information in the summary, for each important concept, we select one sentence that is the best possible elaboration of the concept. Accordingly, the most important concept will contribute first to the summary, then to the second best concept, and so on. To prove the effectiveness of our proposed summarization method, we have compared it to some state-of-the art summarization systems and the results show that the proposed method outperforms the existing systems to which it is compared.

Automatic Summarization of French Scientific Articles by a Discourse Annotation Method using the EXCOM System

  • Antoine, Blais
    • 한국언어정보학회지:언어와정보
    • /
    • 제13권1호
    • /
    • pp.1-20
    • /
    • 2009
  • Summarization is a complex cognitive task and its simulation is very difficult for machines. This paper presents an automatic summarization strategy that is based on a discourse categorization of the textual information. This categorization is carried out by the automatic identification of discourse markers in texts. We defend here the use of discourse methods in automatic summarization. Two evaluations of the summarization strategy are presented. The summaries produced by our strategy are evaluated with summaries produced by humans and other applications. These two evaluations display well the capacity of our application, based on EXCOM, to produce summaries comparable to the summaries of other applications.

  • PDF

Improving Abstractive Summarization by Training Masked Out-of-Vocabulary Words

  • Lee, Tae-Seok;Lee, Hyun-Young;Kang, Seung-Shik
    • Journal of Information Processing Systems
    • /
    • 제18권3호
    • /
    • pp.344-358
    • /
    • 2022
  • Text summarization is the task of producing a shorter version of a long document while accurately preserving the main contents of the original text. Abstractive summarization generates novel words and phrases using a language generation method through text transformation and prior-embedded word information. However, newly coined words or out-of-vocabulary words decrease the performance of automatic summarization because they are not pre-trained in the machine learning process. In this study, we demonstrated an improvement in summarization quality through the contextualized embedding of BERT with out-of-vocabulary masking. In addition, explicitly providing precise pointing and an optional copy instruction along with BERT embedding, we achieved an increased accuracy than the baseline model. The recall-based word-generation metric ROUGE-1 score was 55.11 and the word-order-based ROUGE-L score was 39.65.

자막 정보를 이용한 야구경기 비디오의 자동요약 시스템 (An Automatic Summarization System of Baseball Game Video Using the Caption Information)

  • 유기원;허영식
    • 방송공학회논문지
    • /
    • 제7권2호
    • /
    • pp.107-113
    • /
    • 2002
  • 본 논문에서는 자동으로 야구 비디오를 요약하는 방법과 이를 구현한 소프트웨어 시스템을 제안한다. 제안된 시스템은 빠른 수행 속도와 정확성 높은 요약 결과를 추구한다. 이를 위해 압축비디오상의 특징 값에 기반 한 빠른 비디오 분할과 간단한 자막 인식을 수행하여 야구 경기에서 중요한 이벤트들을 검출한다. 또한, 본 시스템은 여러 레벨의 비디오 요약을 지원하기 위해 계층적 구조의 내용 기술을 지원한다.

질의응답을 위한 복수문서 요약에 관한 실험적 연구 (An Experimental Study on Multi-Document Summarization for Question Answering)

  • 최상희;정영미
    • 정보관리학회지
    • /
    • 제21권3호
    • /
    • pp.289-303
    • /
    • 2004
  • 이 연구에서는 이용자가 여러 곳에 분산되어 있는 문서들을 일일이 보지 않고 하나의 요약문에서 쉽게 질의에 맞는 답을 찾을 수 있는 가장 효율적인 방안을 제시하고자 하였다. 이를 위해, 클러스터링 기법, 단락확장 기법, 두 기법의 특성을 반영한 혼합 기법 등 세 가지 복수문서 요약 기법의 성능을 평가하는 실험을 수행하였다. 요약기법 평가 기준으로는 요약 정확률과 요약문내 정보 중복도를 적용하였다. 실험결과 이용자 질의에 따라 여러 문서를 요약하는 최적 기법으로 문장검색을 기반으로 한 순차적 단락확장 기법을 제안하였다. 순차적 단락확장은 특히, 용약의 대상이 되는 문서가 대용량인 환경에서 정확한 정보를 찾아 요약문을 생성하는 성능이 가장 우수한 것으로 나타났다.

그래프 분할을 이용한 문장 클러스터링 기반 문서요약 (Document Summarization Based on Sentence Clustering Using Graph Division)

  • 이일주;김민구
    • 정보처리학회논문지B
    • /
    • 제13B권2호
    • /
    • pp.149-154
    • /
    • 2006
  • 문서요약은 여러 개의 하위 주제로 구성되어 있는 문서에 대해 문서의 복잡도를 줄이면서 하위 주제를 모두 포함하는 요약문을 생성하는 것이 목적이다. 본 논문은 그래프 분할을 이용하여 하위 주제별로 중요 문장을 추출하는 요약시스템을 제안한다. 문장별 공기정보에 의한 단어의 연관성 분석을 통해 선정된 대표어를 이용하여 문서를 그래프로 표현한다. 그래프는 연결정보에 의해 하위 주제를 의미하는 부분 그래프로 분할되며 부분 그래프는 긴밀한 관계를 갖는 문장들이 클러스터링된 형태이다. 부분 그래프별로 중요 문장을 추출하면 하위 주제별 핵심 내용들로만 요약문을 구성하게 되어 요약 성능이 향상된다.

Viewer's Affective Feedback for Video Summarization

  • Dammak, Majdi;Wali, Ali;Alimi, Adel M.
    • Journal of Information Processing Systems
    • /
    • 제11권1호
    • /
    • pp.76-94
    • /
    • 2015
  • For different reasons, many viewers like to watch a summary of films without having to waste their time. Traditionally, video film was analyzed manually to provide a summary of it, but this costs an important amount of work time. Therefore, it has become urgent to propose a tool for the automatic video summarization job. The automatic video summarization aims at extracting all of the important moments in which viewers might be interested. All summarization criteria can differ from one video to another. This paper presents how the emotional dimensions issued from real viewers can be used as an important input for computing which part is the most interesting in the total time of a film. Our results, which are based on lab experiments that were carried out, are significant and promising.